

ISSN: 2319-8753

International Journal of Innovative Research in Science,

Engineering and Technology

(An ISO 3297: 2007 Certified Organization)

 Vol. 3 , Issue 4 , April 2014

Copyright to IJIRSET www.ijirset.com 11823

Parallel and Pipeline Pattern Matching
Strategy forLow Power Applications

Kiruthika.T1, Brindha.P2

PG Student, Department of ECE, Velalar College of Engineering and Technology, Erode, Tamilnadu, India1
Assistant Professor, Department of ECE, Velalar College of Engineering and Technology, Erode, Tamilnadu, India2

Abstract: One broadly used method for representing
membership of a set of items is the simple space-efficient
randomized data structure known as Bloom filters. Generally
the regular Bloom filter suffers in terms of power
consumption and FPR (False Positive Rate). To overcome this
we proposed two methods. The pipelined Bloom filter
architecture for k-stages has been proposed to attain the
significant power saving. The second method is the parallel
Bloom filter that reduces the FPR. Further a novel Bh-
sequence scheme is introduced in this pooled pipelined and
parallel Bloom filter architecture to reduce the FPR. Through
this method around 10%-20% of the power saving can be
achieved. Bloom filters are used in network security
applications such as web caches, resource routing, network
monitoring.

Keywords:False Positive Rate (FPR), Multi-dimension
Dynamic Bloom Filter (MDBF), Parallel Bloom Filter (PBF),
Counting Bloom Filter (CBF).

I. INTRODUCTION
Now a day, there is an adequate amount of software programs
are installed to guard the computer systems. By using NIDS
method the malicious contents [1] such as internet worms and
viruses were identified in network packets. Network intrusion
detection system (NIDS) [11] scans the header of the internet
packets to seem for the presence of the predefined IP
address.Generally in VLSI signal processing, several outputs
are computed in parallel in a clock period for parallel
processing. In pipelining, it processes a single module in a
clock period. There are two main advantages of using pooled
architecture: high speed and low power.
A Bloom filter is an inventive randomized data structure for
giving information to representing a set in order to corroborate
approximate membership queries. It was discovered by
Burton Bloom in 1970’s [2] for large-scale network
applications such as shared web caches, query routing,
network monitoring, resource routing and traffic management.
Bloom filters are extensively used in networking applications

and to identify malicious content [1] in high speed networks.
During deep packet inspection [12], this checks the payload of
the packets against a set of known virus.
The bloom filter may offer better performance, if the false
positive [10] does not cause major troubles. Anywhere a list
or set is used, and space is a concern, a bloom filter should be
considered. While use a bloom filter, consider the potential
effects of false positives. Generally Dynamic bloom filters are
introduced to represent dynamic sets, as well as static
sets.DBF can regulate the false positive probability at a low
level. Standard and dynamic bloom filters just mainly focus
on the representation of single attributes instead of
representing [3] multi attribute. One of the new technique
Multi-dimension dynamic bloom filter (MDBF) is introduced
to represent the multi attribute items. By the use of RBF
(Retouched Bloom filter) the overall error rate is maintained
low [7] It is expressed as a group of false positive rate and
false negative rate. In RBF, the error rate [8] is made
equivalent to the false positive rate of the consequent bloom
filters.
In order to reduce the power consumption of bloom filters, the
pipelining technique is engaged. The embracing new type of
bloom filter is termed as “Pipelined Bloom Filter”. Bloom
filters indicate the set of ‘n’ patterns in a m-bit array vector.
Before programming, the elements in this array are set to
‘0’and each signature is hashed k times by the autonomous
hash functions. Each hash function locates homogeneously to
a random number and that indicates a bit location in the m-bit
long lookup vector, which is set to ‘1’.
In query stage, bloom filters computes k many hash values for
an input string ‘y’ by utilizing the same hash functions, used
in programming operation. If all the hashes locate to the bit
location that are set to ‘1’ (match), then the query string is in
the set [5]. If any of the hashes locates to the bit location that
is set to ‘0’ (mismatch), then the query string is definitely not
in the set.
A bloom filter not at all produce false negatives, if it decides
input is a nonmember, but it may produce false positives.
The false positive probability f is estimated by,

ISSN: 2319-8753

International Journal of Innovative Research in Science,

Engineering and Technology

(An ISO 3297: 2007 Certified Organization)

 Vol. 3 , Issue 4 , April 2014

Copyright to IJIRSET www.ijirset.com 11824

(1) 1 -e f

k

m
-nk


















Where, n is the number of patterns programmed into the
bloom filter, k is the number of hash functions used to realize
the bloom filter and m is the length of the lookup vector.The
choice of m>n, to diminish the false positive probability. For a
fixed value of m/n, k must be large to minimize the false
positive probability. The number of hash functions that
minimizes the FPR is,

(2) 2ln
n
m K 







The power consumption of the regular bloom filter is a
summation of the power consumption of the each of the hash
functions, . AND L, iH P P , P

(3)

1




k

i
P)P(PP AND L HiBFregular

Here, PAND is ignored. Since it is minimal compared to the
power used by the hash functions and also presume that the
lookup power over a m-bit vector is in the order of steady for
each index designed by any of the hash functions. As hash
functions with the identical number of input bits will be
implemented with the similar number of components and will
consume approximately the same amount of power. So we can
write the power consumption of a regular bloom filter as
follows,

 (4)
1

) Pk.(P

k

i
)P(PP

LH

LHi BF regular








However there is a critical challenge, to the representation and
queries for items that are having multidimensional
attributes.So we proposed one of the new technique MDDBFs
(Multi dimension dynamic bloom filters) to represent items
with multiple attributes. The probability of false positives may
increase, if the MDDBF approach [4] lacks a way to verify the
dependency of multiple attributes of items. Nevertheless, the
MDDBF approach lacks a way to confirm the dependency of
multiple properties of an item, which may increase the
probability of false positives. Through by the parallel bloom
filter with a hash table, this supports the representation of
items with multiple attributes. By using parallel-pipelined
bloom filter design [6], multiple strings can be queried and

that can reduce power consumption along with improving the
throughput. In pipelined design, query string is estimated at
one of the pipeline stages, remaining stages are in ‘idle’. This
technique delivers a greater amount of reduction in power
consumption. But it suffers computation latency. By using
multiple hash functions, multiple query strings are
concurrently evaluated in parallel pipelined bloom filter
design.

II. PIPELINED BLOOM FILTER

Basically, a pipeline bloom filter consists of several groups of
hash functions that are utilized in different stages. While the
number of hash functions required to diminish the false
positive probability of a bloom filter is large, it is superior, in
terms of power, to implement these hash functions in a
pipelined style. We call this new type of bloom filters
pipelined bloom filter [7].
Here hash functions are arranged in pipelined manner, to
reduce the power consumption. Essentially it consists of two
groups of hash functions.

1. First stage, forever computes the hash values.
2. The second stages merely compute the hash values, if

there is any match between the input and the
patterns.

Fig.1 Fully pipelined bloom filter

The merits of using pipelined bloom filter techniques is that, if
the first stage identifies a match, there is no need to use the
second stage to decide whether input string is a part of the
signature set. This is possible only because the Bloom Filter is
free from False negative rate. The shortcoming with this is
power consumption.

ISSN: 2319-8753

International Journal of Innovative Research in Science,

Engineering and Technology

(An ISO 3297: 2007 Certified Organization)

 Vol. 3 , Issue 4 , April 2014

Copyright to IJIRSET www.ijirset.com 11825

Fully pipelined bloom filter design is the remedy for this
power consumption problem. The building of fully pipelined
bloom filter is displayed in Fig 1. This architecture has the
same number of hash functions as the regular bloom filter.
Therefore the false positive probability is also same. In the
inquiry stage, the initial hash functionh1, is fed by a new
inquiry sequence every cycle.
An inquiry string has progressed to the next stage only when
the prior hash function produces a match. Now every hash
module consists of hash function and a m/k bit lookup array.
The inquiry string progress to the next stage, if previous hash
functions fail to match the signature. When the inquiry string
proceeds to the next stages, the design increases the latency.
Analysis
Each hash function coefficients are randomly selected in the
range of 1 to m. The probability that the bit is unset, after all
the signatures are programmed by using k-many independent
hash functions are α.

(5) arg11 e m) (for le
m

α
m
kn

kn








 

Here (1-1/m) is the probability that the bit is unset behind a
single hash value computation with a single signature.
The probability that any one of the bit is set is,

(6) 11 eα)(
m
kn


In order for the first stage to generate a match, the bits
indexed by all r of the free hit and miss hash functions should
be set.
So, ‘P’ is the match possibility of the initial stage that is
indicated as,

    (7) 11
1

r
r

i
 - α - α P 



So, ‘1-P’ is the inequality possibility of the initial phase,

(8) 111)-e-(p
r

m
-kn

By means of a probability of (1-p) the initial stage of the hash
functions in the pipelined bloom filter will cause a mismatch.
Or else, the initial stage produces a match, then the next stage
is used to evaluate the input with the signature
required.Therefore the power consumption of a pipelined
bloom filter is given by,

nd-stage

st-stage BFpipeline

P
P{match}PP

2

1




 

 

 (9)

1

1

 AND

LHj

k

rj

r

i
LH i BFpipeline

 P

PP p

 P P P















Again,
AND P can be neglected. The power consumption of a

pipelined bloom filter is given by,















k

rj
L H j

r

 m
kn

r

i
L H ine BF Pipeli

) P (P

)-e () P (P P

1

1
1

 (10)
1

) P (k-r) (P
) - e () P r . (P

 L H

r

m
-kn

L H





The power saving ratio, PSR, in a single Bloom filter by
deploying pipelining technique can be calculated as

(11)

)(P
)-P (P PSR

regular

pipelined regular


The average power saving ratio, PSR, is specified by

 
)12(

1

 Ak

A k - r
m
-kn-e r A - k

 PSR

r







































Where, A = (PH + PL) which is the power consumption of a
particular hash function with a only lookup operation.

 Finally average power saving ratio PSR is given by,

   
(13)

1
k

 -e r - k k- r
 PSR

r

m
-kn



III. PARALLEL BLOOM FILTER
An intuitive approach to representing multiattribute items can
concatenate various attributes into a single-attribute array to

ISSN: 2319-8753

International Journal of Innovative Research in Science,

Engineering and Technology

(An ISO 3297: 2007 Certified Organization)

 Vol. 3 , Issue 4 , April 2014

Copyright to IJIRSET www.ijirset.com 11826

be stored in a standard bloom filter (SBF). Nevertheless, such
approach may offer delay inquiry replies to users if multiple
attributes have dissimilar formats. In fact, it takes a extended
time to get the hashed result for a single but long attribute
array.However, standard form in an SBF is fundamentally a
compressed representation, limiting its rich inquiry services.
In real-world applications, many inquiry requests cannot
provide exact and absolute descriptions of queried items,
which bound the usage of SBFs for queries of partial
attributes. In this paper we present an approach to the space
well-organized representation of multiattribute items. The
future approach utilize data structures to carry out rapid but
exact membership queries and achieve space savings. So we
describe data structures in three phases:
1. A Parallel Bloom filter (PBF) structures,
2. PBF with a Hash Table (PBF-HT) and
3. PBF with a Bloom filter (PBF-BF).
Fig 2.Shows the Architecture of Parallel bloom filter.This
structure takes each 8-bit value from streaming window for
each individual hash module and produce the corresponding
output. Finally that outputs are ANDed and get the final single
output. False positive rate is highly minimized while using
this parallel bloom filter method, but hardware is slightly
increases.

IV. COMBINED PIPELINED AND PARALLEL
BLOOM FILTER

Combined Pipelined and parallel bloom filter is designed to
satisfy the High speed and Low power requirements. A
general bloom filter consists of multiple hash functions and a
lookup array. The lookup array which is m-bit wide and to
estimate a query string operation, specific k bits in the lookup
array are inspected [9].If all bits locate to 1, the query string is
member of the set. There is a possible that a non-member
query string may be evaluated as a member of the signatures,
which is false positive rate (FPR).If number of hash functions
increases, the FPR(False positive rate) is reduced. It
introduces significant amount of power consumption. By
using combined parallel and pipelined bloom filter design[6],
multiple query strings to be filtered in parallel and can reduce
power consumption along with improving the throughout.

In pipelined design, query string is estimated in one of the
pipelined stages, remaining stages are in ‘idle’. This technique
having greater amount of reduction in power consumption.By
using multiple hash functions, multiple query strings are
concurrently evaluated in parallel pipelined bloom filter
design and compared to regular bloom filter greater
development in throughput.

V. Bh-SEQUENCE METHOD
Bh-sequence
Bh-sequence [10] is a set of integers and are used in network
applications.
Definition(Bhsequence): Let (A, +) be an abelian set. Let

 D },......,,{ 21 lvvv  A be a sequence of elements of A.
then D is a Bh series over A if all the sums

hvivivi 21 with lii h 1 1 are distinct.

Example 1: Let A= Z and D = },,,{ 4321 vvvv = {1, 4, 8, 9};
 A. We can see that all the 15 sums of 4 elements are
distinct: 1+1+1=3, 1+1+4=6, 1+1+8=10, 1+1+9=11, 1+4+4=9,
1+4+8=13, 1+4+9=14, 4+4+4=12, 4+4+8=16, 4+4+9=17,
1+8+8=17, 1+8+9=18, 8+8+8=24, 8+8+9=25, 9+9+9=27.
Here 4+4+9 = 17 = 1+8+8, these two sums are producing
same value. So this is not a Bh-sequence. Therefore, D is a not
a B3 sequence. If we choose D={1,6,8}, then check the
possibilities for B2-sequence, 1+1=2, 1+6=7, 1+8=9, 6+6=12,
6+8=14, 8+8=16. Here the entire sums produce different
values. Therefore D is a B2 sequence.

False Positive Rate of Bh-sequence method
We now present the false positive rate of Bh Bloom. As
generally assumed in the reference [7] we assume that the
hash functions plot items to random numbers equally spread
over their given range.
Theorem: The false positive rate of Bh Bloom is given by,

ISSN: 2319-8753

International Journal of Innovative Research in Science,

Engineering and Technology

(An ISO 3297: 2007 Certified Organization)

 Vol. 3 , Issue 4 , April 2014

Copyright to IJIRSET www.ijirset.com 11827

 14 1111
0

m

-
lm
l-

j
nk

- FPR
kjnkh

j








































Proof:

Let X indicate the number of elements hashed into an entry.

The probability of the event X=j is given by,

   15
m
11

m
1

j
nk

 j XPr
jnkj 







 


















A particular value of the Bh sequence is not used, When

accurately X=j elements are hashed into an entry.

 16
l
1-1 j)(XPr - 1 FPR

kjh

0j
















 


This novel Bh-sequence method is introduced in pipelining
technique to reduce the FPR.

VI. EXPERIMENTAL RESULTS
TABLE 1

FALSE POSITIVE PROBABILITY

PARAMETE

RS

THEORETICAL

EXPERIMEN

TAL
m/
n

val
ue

k
value

Counti
ng

Bloom
Filter

CBF With Bh
Sequence

Counti
ng

Bloom
Filter

CBF
With

Bh
Sequ
ence

35

40

45

50

55

60

24.260

27.725

31.19

35

38.123

41.58

0.0432

0.0356

0.0389

0.0265

0.0043

0.0023

0.
04
89

0.
01
45
7

0.
04
56

0.
00
78
6

0.
03
87

0.
00
03
4

0.
02
58

0.
00
00
23

0.0324

0.0421

0.0258

0.0115

0.0025

0.0019

0.05
24

0.03
24

0.04
21

0.01
52

0.00
13

0.00
11

0.
00
24

0.
00
00
01

0.
00
18

0.
00
00
31

Fig .3 Comparison of false positive probability for CBF

Fig.4 Comparison of false positive probability for CBF with Bh-sequence

TABLE 2

POWER SAVING RATIO
m/n

value
r

val
ue

k
value

PSR for
Pipelined

Bloom
Filter

PSR for
Parallel
Bloom
Filter

ISSN: 2319-8753

International Journal of Innovative Research in Science,

Engineering and Technology

(An ISO 3297: 2007 Certified Organization)

 Vol. 3 , Issue 4 , April 2014

Copyright to IJIRSET www.ijirset.com 11828

20

40

60

80

100

10

20

30

40

50

13.86

27.72

41.58

55.45

69.31

0.312

0.289

0.232

0.202

0.182

0.489

0.324

0.314

0.295

0.243

Fig .5Power saving ratio of pipelined and parallel bloom filter

From table 1, shows the false positive rate of counting Bloom
filter and CBF with Bh-sequence are depending on m/n and k
values. The choice of m should be greater than n, to diminish
the false positive probability. For a fixed value of m/n, k must
be larger to minimize the false positive probability. For
example, substituting m/n=35 in (2) equation, the
corresponding k=24.260 is calculated. Substituting k value
into (1) equation, the corresponding false positive probability
is estimated for counting Bloom filter. From this analysis,
bloom filter with Bh-sequence will produce a less false
positive probability compared with normal counting bloom
filter. From this analysis, by using these methods false
positive probability is highly reduced. From table 2 the PSR
of pipelined BF is higher than the parallel BF.

VII. CONCLUSION
In this paper, we proposed a pipelined Bloom filter method to
achieve greater power saving.To attain the accurate signature
detection multi hash functions have to be included. The

number of hash functions required to minimize the false
positive probability of a bloom filter is large, thus power
consumption is more. To reduce this, the hash functions are
implemented in a pipelined manner, in which hash functions
are made as stages and detection of signature is based on the
previous stage output.Through this method 10%-20% of the
power saving can be achieved.The use of parallel Bloom filter
that diminish the FPR.Compared with traditional bloom filter,
the use of Pipelined bloom filter with Bh-sequence method
there is a small reduction in FPR. But for parallel Bloom filter
with Bh-sequence method significant reduction in FPR. The
Power saving ratio of pipelined bloom filter is high compared
with parallel bloom filter.

ACKNOWLEDGEMENT

The authors acknowledge the contributions of the students,
faculty of Velalar College of Engineering and Technology for
helping in the design of test circuitry, and for tool support.
The authors also thank the anonymous reviewers for their
thoughtful comments that helped to improve this paper. The
authors would like to thank the anonymous reviewers for their
constructive critique from which
this paper greatly benefited.

REFERENCES
[1] Kaya.I and Kocak.T (2006), “Low-power Bloom filter architecture

for deep packet inspection,” IEEE Commun. Lett., vol. 10, no. 3,
pp. 210-212.

[2] Broder.A and Mitzenmacher.M (2005), “Network applications of
Bloom filters: a survey,” Internet Mathematics, vol. 1, no. 4, pp.
485-509.

[3] Chen.H, Guo.D, Luo.X and Wu.J, (2006), “Theory and Network
Application of Dynamic Bloom Filters,” Proc. IEEE INFOCOM.

 [4] Bin Xiao and Yu Hua (2010),“Using Parallel Bloom Filters for
Multiattribute Representation on Network Services,” IEEE
transactions on parallel and distributed systems, vol. 21, No.1.

[5] Kocak.Tand Paynter.M (2008), “Fully pipelined Bloom filter
architecture,” IEEE Communications letters, vol.12, No.11.

[6] Deokhokim,Doohwan oh (2012) “Design of power-efficient
parallel pipelined bloom filter, ” Electronic letters ,vol.48, No. 7.

[7] Baynat.B, Donnet.B and Friedman.T (2006), “Retouched Bloom
Filters: Allowing Networked Applications to Trade Off Selected
False Positives Against False Negatives,” Proc. Int’l Conf.
Emerging Networking Experiments and Technologies (CoNEXT).

[8] Bloom.B (1970), “Space/time trade-offs in hash coding with
allowable errors,” Commun. ACM, vol. 13, no.7, pp. 422-426.

[9] Hill.M, Sanchez.D, Sankaralingam.K and Yen.L (2007),
“Implementing signatures for transactional memory,” in Proc. 40th
IEEE/ACM Int’lSymp. on Micro architecture, Chicago, IL.

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50

PS
R

Number of hash functions (r)

pipeline parallel

ISSN: 2319-8753

International Journal of Innovative Research in Science,

Engineering and Technology

(An ISO 3297: 2007 Certified Organization)

 Vol. 3 , Issue 4 , April 2014

Copyright to IJIRSET www.ijirset.com 11829

[10] OriRottenstreich and Isaac Keslassy (2013), “The variable
increment counting bloom filter”, IEEE /ACM transactions on
networking.

[11] Attig.M, Dharmapurikar.S and Lockwood.J (2012) “Design and
Implementation of a String Matching System for Network
Intrusion Detection using FPGA based Bloom Filters”, IEEE
transactions on VLSI systems,vol.6.

[12] Bloom.B (1970),“Space/time trade-offs in hash coding with
allowable errors,” Commun. ACM, vol. 13, no. 7, pp. 422-426.

[13] Dharmapurikar.S, Krishnamurthy.P, Lockwood.J.W and
Sproull.T.S (2004), “Deep packet inspection using parallel Bloom
filters,” IEEE Micro, vol. 24, no. 1, pp. 52-61.

[14] Dharmapurikar.S, Krishnamurthy.P and Taylor.D.E(2003),
“Longest Prefix Matching Using Bloom Filters,” Proc. ACM
SIGCOMM.

[15] Saar.C and Yossi.M, (2003), “Spectral Bloom Filters,” Proc. ACM
SIGMOD.

