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ABSTRACT

Three wave parametric instability of a large amplitude lower hybrid 
wave in two-ion species plasma is studied analytically. The pump decays 
into a low frequency mode or quasi mode in the ion cyclotron range of 
frequency and a lower hybrid wave sideband. The dominant channel of 
decay is the one for which the low frequency mode is an ion cyclotron wave 
with frequency  close to the ion cyclotron frequency of either ion species. For 
typical D-T plasma of a tokamak, the growth rate for ω close to deuterium 
cyclotron frequency, increases with the wave number of the ion cyclotron 
wave and decreases as the ratio of deuterium to tritium density increases.
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INTRODUCTION
Parametric instabilities have been an important feature of large amplitude lower hybrid waves in tokamak as well as smaller 

plasma devices. During the first decades of nuclear fusion research, high power lower hybrid waves in the 500 MHz-1 GHz 
frequency range were candidates for heating magnetized plasmas to thermonuclear temperatures. More recently, such waves 
were found to be mostly attractive at higher frequency (1-5 GHz) for driving non-inductive currents in tokamak plasmas, thus 
opening the possibility of running tokamak in steady state, and leading to the conceptual design of a steady state tokamak 
reactor. Radio frequency (RF) heating and current drive of tokamak in the lower hybrid range of frequency has been an active field 
of research for over three decades. In this frequency range, toroidal plasma current is sustained by replenishing the collisional 
momentum loss of current carrying suprathermal electrons while ions are heated directly through the Landau damping or via the 
excitation of parametric instabilities [1-5]. The prominent channels of three wave parametric decay involve an ion-cyclotron mode or 
quasi mode and a lower hybrid sideband. In the four wave coupling oscillating two stream instability is the most dominant process. 
Resonant decay into two lower hybrid waves is also a completing process [6-11].

The current drive experiments on a number of tokamak machines have been successfully performed. Fully non inductive 
discharges of up to 3.6 MA in JT-60U [12], 3 MA in the Joint European Torus (JET) [13] and 0.5 MA during 6 min in Tore Supra [14] have 
been achieved with lower hybrid waves. The projected ITER lower hybrid systems will inject approximately 50 MW of power and 
they are optimized for the off-axis current drive functions [15]. Liu et al. have investigated the Lower hybrid wave (LHW) heating in 
deuterium plasma in the HT-7 tokamak [16]. The ion and electron temperatures were increased by 0.4 keV and 0.3 keV respectively 
for PLH∼300kW. The ion heating has been observed in the HL-1M tokamak when the plasma density exceeded 3.5  × 1013 cm-3 
[17]. LHW experiments have been performed in HT-6M tokamak by Li et al., they have reported the quasi-steady state H-mode with 
high plasma density by the injection of lower hybrid heating (LHH) and lower hybrid current drive (LHCD) with a power threshold 
of 50 kW [18]. A good confinement was obtained in ASDEX by combining LHCD and neutral beam injection (NBI) [19]. A full wave 
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current drive with a very high density (4.5 × 1019m-3) was obtained in the high-field Frascati Tokamak Upgrade (FTU) [20]. Fisch [21,22] 
has given an elegant review of lower hybrid wave heating and current drive in tokamak. Recently, Ahmad [23] has pointed out the 
parametric excitation of ion-ion hybrid mode by a lower hybrid wave in D-T plasma where growth is faster for higher deuterium to 
tritium density ratio.

Observations in space indicate that LH waves are among the most important waves in the earth’s magnetosphere. In fact, 
LH wave play a central role in the process of collision less energy and momentum transport in space plasmas. Recently there has 
been much interest [24,25] in magneto sonic and other waves in multi-ion plasmas.

Two ion species plasma in tokamak has the possibility of extra channels of parametric decay. In this paper, we study the 
parametric decay of a large amplitude lower hybrid wave into an ion cyclotron wave and lower hybrid sideband wave in two ion 
species plasma such as those considered for nuclear fusion. The channels of decay are: i) resonant decay into an ion cyclotron 
mode near the ion cyclotron frequency of the either ion species, ii) nonlinear cyclotron damping on either ion species. The lower 

hybrid pump wave ),( 00 k


ω , imparts an oscillatory velocity 0v  to electrons. The latter beats with the density perturbation due 

to the low frequency mode ( , )kω


 to produce a nonlinear density perturbation, driving the sideband lower hybrid wave 1 1( , )kω


, where ω1=ω − ω0, 01 kkk


−= . The sideband couples with the pump to produce a ponder motive force on electrons that drive 
the low frequency mode.

In Sec. 2, we obtain the linear response of electrons to the pump and sideband waves and the low frequency mode. In 
Section 3, we study the nonlinear coupling and obtain the nonlinear dispersion relation and the growth rate. The results have 
been discussed in Section 4.

LINEAR RESPONSE
Consider a two-ion species plasma (e.g., tokamak) of equilibrium electron density 0

0n , in a static magnetic field ˆsB z . The ion 
species are characterized by mass m1, m2, density 0 0

01 02,n n  and charge Z1e, Z2e such that 0 0 0
01 1 02 2 0n Z n Z n+ = . A large amplitude 

lower hybrid pump wave propagates through the plasma in the x-z plane with electrostatic potential
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where 0 0 0ˆ ˆx zk k x k z= +


, k0x>>k0z, ωc >> ωc1,ωc2 >> ωci, ω0 >> k0Z νthi, ω0 >> k0Z νth, ω >> k0Z νth, k0⊥νth/c <<1, m is the mass of 

electrons, vth=(2Te/m)1/2 and vthi=(2Ti/ mj)
1/2, j=1,2. 0 2 1/2

0(4 / )p n e mω π= , 2/1220
0 )/4( jjpi meZnπω = , j=1,2 and ωc=(eBs/ 

m c)1/2, -e and m are the electron charge and mass.

The pump wave imparts oscillatory velocity to electrons 0v , which is governed by the equation of motion

0
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where we have ignored the pressure term. Linearizing this equation and replacing ∂/∂t by -iω0,

we obtain
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Using the velocity perturbation in the linearized equation of continuity
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we obtain the density perturbation
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The pump wave decays into an electrostatic ion cyclotron mode / quasimode of potential φ and a lower hybrid sideband 
wave of potential  s,

( )A exp .i t k rφ ω = − − 


 ,                       (7)

( )A exp .s s s si t k rφ ω = − − 


 ,                    (8)

where

ωs=ω-ω0, 0kkks



−= .

The linear response of electrons to the sideband at ( )ss k
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,ω  is same as given by Equations (4–5), with 00 , k
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The linear density perturbations of electrons and ions at ,kω


 can be written in terms of electron and ion susceptibilities 
χe, χi1, χi2,
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where vthj=(2Tj/ mj), are the ions thermal speeds, ωcj=ZjeBs/mjc are the ion-cyclotron frequencies. In(b1) and In(b2) are the 

modified Bessel functions of order n and arguments b1 and b2, and 2 2 2
1 1 1v / 2th cb k ω⊥= , 2 2 2

2 2 2v / 2th cb k ω⊥= .

NONLINEAR RESPONSE AND GROWTH RATE
The sideband couples with the pump to produce a low frequency ponder motive force v. vpF m= − ∇



 

 on the electrons. 
pF


 

has two components, perpendicular and parallel to the magnetic field. The response of electrons to pF ⊥



 is strongly suppressed 

by the magnetic field and is usually weak. In the parallel direction, the electrons can effectively respond to pzF


, hence, the low 
frequency nonlinearity arises mainly through v. vpz zF m= − ∇





.

The parallel pondermotive force on electrons at ,kω


 can be written as

( )0 1 1 0v . v v . v
2pz z z
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The pondermotive potential φP turns out to be
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The electron density fluctuations in response to φ P and the self-consistent potential φ at ,kω


 can be written as
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Using Eqs. (16) and (17) in the Poisson’s equation

∇2φ=4πe(n-Z1ni1- Z2ni2),

we obtain,

εφ=− χeφP,                        (18)

where

ε=1 + χe + χi1 + χi2.

The density perturbation at ,kω


 couples with the oscillatory velocity of electrons 0v , to produce a nonlinear density 
perturbation at the sideband

1 1,kω


. Solving the equation of continuity for the nonlinear density perturbation at the sideband,
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The linear density perturbation of electrons due to the self consistent potential φ s is
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Here we have ignored the nonlinearity arising through ions as it is suppressed by their large mass.

Using these electron and ion density perturbations in the Poisson’s equation
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we obtain
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Equations (18) and (22) yield the nonlinear dispersion relation
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We solve Eq. (23) in the case of resonant decay.

In case ,kω


 and ,s skω


, in the absence of the pump, satisfy the linear dispersion relations corresponding to ion cyclotron 
and lower hybrid waves respectively, the decay process is termed as resonant decay.

In the vicinity of ω ≈ωc1, when ω−1 >> kZ ν th1, the linear dispersion relation for the low frequency mode (=0) takes the form
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The linear dispersion relation for the sideband (εs=0) gives
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In the presence of nonlinear coupling we write

ω=ωr + iγ,

ωs=ωsr + iγ,

and expand ε and εs around ωr and ωsr as
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where we have suppressed the subscript r on ωr and ωs for the sake of brevity. Then the nonlinear dispersion relation gives
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Equation (29) simplifies to
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where δ is the angle between k⊥



 and 0k ⊥



.

In order to have numerical appreciation of the growth rate, we have carried computations of growth rate for the following 

parameters: ω0/ωLH=2, |V0|/Vth1=2, 2 2/ 1/ 4p cω ω = , δ=/2, m1/m2=367, m1/m2=5508 (D-T plasma), 0/k0Z=2, Te/T1=1.5, T2=T1, 

Z1=Z2=1. We have plotted in Figure 1, the variation of normalized growth rate, γ/c1 as a function of k⊥ρ1 (where ρ=Vth1 /ωc1) for n01/

n0=0.5,1,2
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Figure 1. Variation in normalized growth rate, γ/ωc1, as a function of k1vth1/ωc1 for different values of n01/n02 for the following parameters: ω0/

ωLH=2, 0 1v / v 2th = , 2 2 0 25p c/ .ω ω = , δ=π/2, m1/m =3672, m2/m=5508, (D-T plasma), ω0/k0z=2, Te/T1=1.5, T2=T1, Z1=1, Z2=1.

DISCUSSION
At high power, lower hybrid waves are prone to parametric decay because of their large electrostatic component in the 

direction perpendicular to the equilibrium magnetic field. This was particularly the case in experiments where the wave frequency 
was chosen for ion heating through the lower hybrid resonance. A high fraction of the injected power was found to decay non-
linearly into lower frequency daughter waves, and this phenomenon often prevented the power to reach the plasma core and 
heat the plasma efficiently. At the higher frequencies required for current drive, the question of parametric decay seems to 
be less severe, but it remains open, especially at high density, and it is the subject of extensive theoretical and experimental 
investigations. Lower hybrid wave is parametrically unstable when the oscillatory velocity of electrons is of the order or greater 
than the sound velocity. For tokamak parameters, the powers required are of the order of ≥10 MW. The decay into an ion cyclotron 
wave and a lower hybrid wave possesses large growth rate. The coupling between high and low frequency modes is provided 

primarily by the parallel ponder motive force on electrons involving E B×
 

 drift.

For a typical D-T plasma of a tokamak, the growth rate for ion cyclotron wave with frequency ω close to deuterium cyclotron 
frequency increases with the wave number of the ion cyclotron wave. However, the growth rate decreases as the ratio of deuterium 
to tritium density increases.
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