Preparation, Characterization and Study of Biological and Structural Optimization of Ni and Cu Complexes

Salah BA, Kandil AT and Abd El-Nasser MG*

Industrial Unit, Department of Chemistry, Faculty of Science, Helwan University, Cairo, Egypt

Research Article

Received date: 22/03/2018 Accepted date: 30/03/2018 Published date: 06/04/2018

*For Correspondence

Mohamed Gamal Abd-El-Nasser, Industrial Unit, Department of Chemistry, Faculty of Science, Helwan University, Cairo, Egypt.**Tel:** +201015811550

E-mail: mg_science2000@yahoo.com

Keywords: Semicarbazide, Thiosemicarbazide, Biological activity, Transition metal complexes

ABSTRACT

Semicarbazide (SC) and thiosemicarbazide (TSC) derivatives were allowed to react with salicylaldehyde (SA), 2-acetylpyridine (AP) and 2-acetylthiophene (AT). The synthesized ligands are reacted with some transition metals like Ni and Cu with molar ratios 2:1 and the prepared complexes are characterized by spectroscopic methods. The expected structures for the prepared complexes, total energy, dipole moment and dihedral angles were theoretically studied and fully optimized using Gaussian 09w.

INTRODUCTION

The modern study of coordination compounds begins with two famous men, Alferd Werner and Sophus Mads Joargensen. Alferd Werner in 1893, proposed the coordination theory. For this pioneering work Alferd Werner received the Nobel Prize in 1913. In fact he was the founder of modern coordination chemistry who postulated the first successful theory, known as "Werner's Coordination Theory", to study the formation, properties, characteristics and geometric stereochemistry of coordination compounds ^[1]. It was proposed that a chemical bond required the sharing lone pair of electrons lead to the idea that a neutral molecule with an electron pair (Lewis-base) can donate these electron to vacant orbitals on metal ion or other electron acceptor (Lewis acid). Although the electron pair donor concept of Lewis is still useful for many Lewis acid base interactions for complex formation. The detailed and more modern concepts to explain formation of coordination bonds, the associated bond properties, structures, stabilities, geometrical shape and the molecular properties as a whole are more conveniently and successfully considered in terms of modern bonding theories the VBT, the CFT, the LFT and the MOT. Metals play a very important role in an immense number of extensively differing biological processes. Some of these processes are quite specific in their metal ion requirements, in that only certain d-block ions in certain oxidation states can accomplish the necessary catalytic structural requirement ^[2].

EXPERIMENTAL WORK

Synthesis of [Cu (CH₃COO-)₂(SASC)2]H₂O (M₅) Complex

The ethanolic solution of 0.005 mol copper acetate monohydrate was mixed with ethanolic solution of 0.01 mol of (SASC) ligand and the solution was refluxed for 4h. The completeness of reaction was followed by TLC and the final product was diltered and dried ^[3].

Synthesis of [NiCl₂(APSC)₂].6H₂O (M₈) Complex

An aqueous solution of 0.005 mol nickel chloride hexahydrate was added to an ethanolic solution of 0.01 mol of (APSC) ligand with continuous refluxing for 2h. The completeness of reaction was followed by TLC and the final product was filtered and dried ^[4].

Synthesis of [NiCl₂(ATSC)₂].6H₂O (M₁₃) Complex

An aqueous solution of 0.005 mol nickel chloride hexahydrate was mixed with hot ethanolic solution of 0.01 mol of (ATSC) ligand with continuous stirring at 90 °C for 3h. The completeness of reaction was followed by TLC and the final solution was filtered and dried ^[5].

RESULTS AND DISCUSSION

Mass Spectrum of M_{s} Complex

Yield%, 71%; m.p. 173 °C. The mass spectrum of the prepared M_5 complex didn't show the molecular ion peak of the complex due to its unstability, the suggested structure is $2A_1$.HCl+Cu⁺²₊2(CH₃COO)⁺+H₂O, which has a molecular weight 630.9 g/mol **(Figure 1).** The peak appeared at m/z=106 due to (Ph (OH)-CH). The peak appeared at m/z=301 due to ((Ph (OH)-CH=N...Cu (OAc)₂)^[6,7].

IR Spectrum of M_{s} Complex

Figure 2. The IR spectrum of the complex (M_5) .

The IR spectrum of the complex M_5 was recorded in KBr Cell. It showed a band at 1589 cm⁻¹ due to C=N (azomethine) which may be shifted to lower wave number due to binding with metal (Figure 2). The bands appeared at 3458 cm⁻¹ due to OH which is coordinated with metal. The band appeared at 474 cm⁻¹ may be due to $[O \rightarrow Cu^{+2}]$.

The expected structure is:

Mass Spectrum of M₈ Complex

Yield%, 64%; m.p, 163 °C. The mass spectrum of the prepared M_s complex didn't show the molecular ion peak of the complex due to its unstability, the suggested structure is $2C_{1.HCI}$ +Ni⁺²₊2Cl⁻⁺6H₂O, which has a molecular weight 668.15 g/mol. The peak appeared at m/z=85 due to (C=N-NH-C(O)-NH₂) (**Figure 3**). The peak appeared at m/z=299 due to ((C=N-NH-C(O)-NH₂))₂--- NiCl₂. The peak appeared at m/z=152 due to removal of C₂H₂ from pyridine ring of C₁ ligand.

IR Spectrum of M₈ Complex

Figure 4. The IR spectrum of the complex (M_a).

The IR spectrum of the complex M₈ was recorded in KBr Cell. It showed band at 1663 cm⁻¹ due to C=O which may be shifted

to lower wave number due to binding with metal also, the band appeared at 1523 cm⁻¹ due to C=N (azomethine group) which may be shifted to lower wave number due to binding with metal **(Figure 4).** The bands appeared at 3300-3380 cm⁻¹ due to different free NH₂ groups. The band appeared at 563 cm⁻¹ may be due to $[N \rightarrow Ni^{+2}]$ ^[8,9].

The expected structure is:

Mass Spectrum of M₁₃ Complex.

Figure 5. The mass spectrum of the complex (M_{12}) .

Yield%, 52%; m.p, 154°C. The mass spectrum of the prepared M_{13} complex didn't show the molecular ion peak of the complex due to its unstability, the suggested structure is $2B_{1.HCI} + Ni^{+2}_{+}2CI^{-+}6H_{2}O$, which has a molecular weight 677.12 g/mol. The peak appeared at m/z=143 due to (N...NiCl₂) (Figure 5). The peak appeared at m/z=338 due to (CH₃-C=N-NH-C(O)-NH₂....NiCl₂.6H₂O

IR Spectrum of M₁₃ Complex

The IR spectrum of the complex M_{13} was recorded in KBr Cell. It showed band at 1638 cm⁻¹ due to C=O which may be shifted to lower wave number due to binding with metal also, the band appeared at 1433 cm⁻¹ due to C=N (azomethine group) which may be shifted to lower wave number due to binding with metal **(Figure 6).** The bands appeared at 3350-3470 cm⁻¹ due to different free NH₂ groups. The band appeared at 575 cm⁻¹ may be due to $[N \rightarrow Ni^{+2}]^{[12,13]}$.

The expected structure is:

The magnetic properties for the prepared complexes are summarized in Table 1.

Table 1. Saturation magnetization, remanence magnetization, coercive field and magnetic moment for the prepared complexes.

Complex	Saturation magnetization (Ms),	Remanence magnetization (Mr),	The coercive field (Hc)	Effective magenetic moment, B.M	No of unpaired electrons	Expected structure
M ₅	0.01673	0.00196	146.84	1.98	1	Octahedral
M ₈	0.03105	0.00252	105.07	3.25	2	Tetrahedral
M ₁₃	0.02430	0.00220	159.47	2.94	2	Tetrahedral

Complex	M ₁₃		M ₈			
Structure labeling	C10 ^{S11} N3 C2 C9 C8 ^{C7} C ^{N2} 22 G C15 C132	C35 3 N28C29 24 C25N27 C30631 C34 C32 N26 C332	C35 C34 C34 C33 C33 C31 N30 C38 N29 C31 N30 C38 N29 C31 N30 C38 N29 C31 C31 C31 C31 C31 C31 C31 C31 C31 C31	28 C12214210 N12 C9 2n24 C7 C8 1456 N2C1 C4N3 C16 05		
Structure						
E _{total} , a.u.	-4247.76657		-3638.27040			
Sum of ΔH	-4247.92898		-3638.47949			
Sum of ΔG	-4248.02671		-3638.57416			
Е _{номо} , а.и.	-0.21025		-0.20055			
Е _{LOMO} , a.u.	-0.07	-0.07596		-0.09746		
ΔEg ev						
	N	-0.431	N ₂	-0.420		
	N	-0.503	N ₃	-0.472		
	0	-0.507	0,	-0.488		
Atomic charges	N ₆	-0.757	N ₆	-0.776		
	024	-0.516	N ₁₂	-0.583		
	N ₂₆	-0.765	026	-0.617		
	N ₂₇	-0.503	N ₂₈	-0.740		
	N ₂₈	-0.215	N ₂₉	-0.472		
	S ₃₁	0.287	N ₃₀	-0.270		
			N ₃₇	-0.452		

Table 2. The total energies, enthalpies, bond angles, dihedral angles for the prepared complexes.

	R(1,2)	1.305	R(1,2)	1.307
	R(1,7)	1.451	R(1,7)	1.461
	R(2,3)	1.415	R(2,3)	1.382
	R(3,4)	1.425	R(3,4)	1.441
	R(4,5)	1.219	R(4,5)	1.216
	R(4,6)	1.366	R(4,6)	1.365
	R(7,8)	1.389	R(7,8)	1.394
	R(2,22)	1.863	R(7,12)	1.360
	R(8,9)	1.413	R(8,9)	1.393
Bond longth (D) Å	R(22,23)	2.209	R(9,10)	1.3929
Bond length (R), A	R(22,24)	1.877	R(10,11)	1.3928
	R(24,25)	1.245	R(24,25)	3.0848
	R(25,26)	1.362	R(25,26)	1.8767
	R(25,27)	1.370	R(25,27)	1.2758
	R(27,28)	1.363	R(27,28)	1.3192
	R(28,29)	1.290	R(27,29)	1.3765
	R(29,30)	1.477	R(29,30)	1.3555
	R(29,35)	1.507	R(32,37)	1.347
	R(30,31)	1.754	R(30,31)	1.2888
	R(31,32)	1.730	R(31,32)	1.4911
	R(32,33)	1.368	R(32,33)	1.4036
	R(33,34)	1.424	R(33,34)	1.3943
	A(2,1,7)	125.882	A(2,1,7)	112.720
	A(1,2,3)	115.845	A(1,2,3)	118.098
	A(2,3,4)	120.621	A(2,3,4)	122.768
	A(3,4,5)	118.515	A(3,4,5)	117.587
	A(3,4,6)	115.524	A(3,4,6)	115.965
	A(5,4,6)	125.609	A(5,4,6)	126.360
	A(1,7,8)	124.010	A(1,7,8)	125.269
	A(1,2,22)	129.800	A(1,7,12)	113.323
	A(3,2,22)	113.947	A(8,7,12)	121.404
	A(7,8,9)	113.897	A(7,8,9)	119.025
	A(2,22,23)	91.718	A(8,9,10)	119.058
	A(2,22,24)	88.532	A(9,10,11)	118.980
	A(22,24,25)	132.927	A(7,11,12)	119.443
	A(24,25,26)	123.670	A(2,24,25)	82.452
Bond angle (A)°	A(24,25,27)	120.536	A(2,24,26)	175.478
Don't angle (A)	A(26,25,27)	115.718	A(24,25,26)	96.778
	A(25,27,28)	120.062	A(24,26,27)	122.320
	A(27,28,29)	118.953	A(26,27,28)	125.621
	A(28,29,30)	125.360	A(26,27,29)	115.590
	A(28,29,35)	116.105	A(28,27,29)	118.699
	A(30,29,35)	118.534	A(27,29,30)	118.981
	A(29,30,31)	120.816	A(29,30,31)	119.599
	A(29,30,34)	129.140	A(30,31,32)	115.775
	A(31,30,34)	109.996	A(30,31,32)	121.277
	A(30,31,32)	91.894	A(31,32,37)	116.778
	A(31,32,33)	111.847	A(33,32,37)	121.936
	A(32,33,34)	112.651	A(32,33,34)	119.113
			A(1,2,24)	116.800

	D(7,1,2,3)	-1.4548	D(7,1,2,3)	177.298
	D(2,1,7,8)	-179.546	D(2,1,7,8)	-177.7415
	D(1,2,3,4)	113.37	D(1,2,3,4)	-73.2758
	D(2,3,4,5)	161.84	D(2,3,4,5)	-177.2052
	D(2,3,4,6)	-24.5704	D(2,3,4,6)	5.9724
	D(7,1,2,22)	-173.6101	D(7,1,2,24)	-0.0225
	D(22,2,3,4)	-73.2186	D(12,7,8,9)	0.2634
	D(1,2,22,23)	-73.5074	D(1,2,24,26)	-2.7323
	D(1,2,22,24)	-164.68	D(1,2,24,25)	77.7595
	D(3,2,22,23)	114.217	D(3,2,24,25)	-99.3536
	D(3,2,22,24)	23.0443	D(3,2,24,26)	-179.8454
	D(1,7,8,9)	-179.3754	D(1,7,8,9)	179.7115
	D(22,24,25,26)	6.4254	D(1,7,12,11)	-179.6059
	D(22,24,25,27)	-170.2927	D(8,7,12,11)	-0.0965
Dihadral angla (D) ⁹	D(24,25,27,28)	-5.853	D(24,26,27,28)	-40.5313
Diffeoral angle (D)	D(26,25,27,28)	177.1784	D(24,26,27,29)	142.937
	D(25,27,28,29)	-179.4751	D(26,27,29,30)	179.3258
	D(27,28,29,30)	-3.4089	D(28,27,29,30)	2.5397
	D(27,28,29,35)	176.4606	D(27,29,30,31)	169.5779
	D(28,29,30,31)	137.643	D(29,30,31,32)	179.0346
	D(28,29,30,34)	-45.0917	D(2,1,7,12)	1.7456
	D(35,29,30,31)	-42.2236	D(35,36,37,32)	-0.0041
	D(35,29,30,34)	135.0417	D(34,35,36,37)	0.3304
	D(29,30,31,32)	178.1294	D(33,34,35,36)	-0.406
	D(34,30,31,32)	0.3862	D(32,33,34,35)	0.1838
	D(29,30,34,33)	-177.7428	D(33,32,37,36)	-0.2404
	D(31,30,34,33)	-0.2418	D(31,32,37,36)	-179.2626
	D(30,31,32,33)	-0.4449	D(30,31,32,33)	-158.4369
	D(31,32,33,34)	0.3865	D(31,32,33,37)	20.5921
	D(32,33,34,30)	-0.0897	D(37,32,33,34)	0.1503

Table 2 results show that the structure M8 and M13 have the total energy -3638.27040 and -4247.76657 a.u, which their geometrical structures are tetrahedral structures, which expected to be the most stable structures through a formation of coordination bond with carbonyl and imine groups, Nickel bonded with two chloride ions to give a total coordination number 4 ^[14].

CONCLUSION

The reaction between semicarbazide, thiosemicarbazide with aldehydes and ketones groups are used for Schiff base derivatives preparation, the prepared ligands have multidentate function groups which increase their ability for binding with transition metals. The study of magnetic moment and theoretical calculations prove the geometrical shape of the prepared complexes.

REFERENCES

- 1. Taracad K, et al. Dipyridyl Thiosemicarbazone Chelators with Potent and Selective Antitumor Activity Form Iron Complexes with Redox Activity. Journal of Inorganic Biochemistry 2016.
- 2. Yousef TA, et al. Electrophilicity-Based Charge Transfer Descriptor. Journal of Molecular Structure 2009;1119:351-64.
- 3. Anitha P, et al. Ortho-Metalated Ruthenium Hydrido Dihydrogen Complexes: Dynamics, Exchange Couplings, and Reactivity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2012;99:174-80.
- 4. Singh HL, et al. Synthesis and spectral, antibacterial, molecular studies of biologically active organosilicon(IV) complexes. Journal of the Association of Arab Universities for Basic and Applied Sciences 2016.
- 5. Magdy S. Zinc(II) Thiosemicarbazone Complex as a Ligand Towards Some Transition Metal Ions: Synthesis, Spectroscopic and Antimicrobial Studies. Spectrochimica Acta Part A 2009;73:313–23.
- 6. Anangamohan P, et al. Inorganica Chimica Acta 2009;362:1348-54.
- 7. Nahed MH, et al. Inorganica Chimica Acta 2015;432:231–42.
- 8. Sulekh C and Meenakshi P. Spectrochimica Acta Part A 2007;68:883-90.

RRJCHEM | Volume 7 | Issue 1 | January-March, 2018

- 9. Vukadin M, et al. (E)-4-[(2-Carbamoylhydrazinylidene)-methyl]-3-hydroxy-5-hydroxymethyl-2-methylpyridin-1-ium nitrate. Polyhedron 2007;26:49-58.
- 10. Panneerselvam A, et al. Journal of Photochemistry and Photobiology B: Biology 2013;129:17-26.
- 11. Junming H, et al. Tricarbonylrhenium(I) Complexes with Thiosemicarbazone Derivatives of 2-Acetylpyridine and 2-Pyridine Formamide Showing Two Unusual Coordination Modes of Tridentate Thiosemicarbazone Ligands. Journal of Inorganic Biochemistry 2013;119:10-20.
- 12. Sushil KS and Atnafu G. International Journal of Chemical and Natural Sciences 2013;6:164-9.
- 13. Dina MF, et al. Natural Science 2010;2:817-27.
- 14. Sanap SV and Patil RM. Research Journal of Pharmaceutical Sciences 2013;2:1-10.