

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

 Vol. 3, Issue 5, May 2015

Copyright to IJIRCCE DOI: 10.15680/ijircce.2015.0305001 3726

QoS-aware Video Transcoding Service

Composition Process in a Distributed Cloud

Environment

 Nawaf O. Alsrehin

Graduate Teaching Assistant, Dept. of Computer Science, College of Engineering, Utah State University, Logan, Utah,

USA

ABSTRACT: In this paper, we address the problem of selecting and composing video transcoding services in a

distributed cloud environment. One of the challenging issues for video transcoding service composition is how to find

the best transcoding path to route the data flow through while satisfying the viewer requirements and specifications. In

a cloud environment, video transcoding service providers provide different video transcoding services that have similar

functionality (i.e., format conversion), but with different Quality of Services (QoS) specifications. Since the

combination of the QoS specifications, such as frame size, frame rate, video bit rate, and transcoding delay might affect

the end user’s experience in non-intuitive and subjective way and also might affect the delivering of a high quality

video content over any type of network, we propose a QoS-aware model to select and compose the best video

transcoding services to satisfy hard constraints on the input and output video formats and comes as close as possible to

satisfying soft constraints on the QoS. This model uses an aggregate function to evaluate the QoS for each transcoding

service and for each viewer request to explore the best composition path. In this paper, we adapt the Simulated

Annealing (SA) algorithm and the Genetic Algorithm (GA) as candidate solutions to help in the composition process.

The SA/GA algorithms provide multi-constraints QoS assurance for video transcoding service composition. They also

support directed acyclic graph composition topology. We have implemented a prototype of the proposed algorithms

and conducted experiments using small-, medium-, and large-scale graphs of video transcoders and sample viewer

requests to measure the performance and the quality of the results. The experimental results show that the SA

outperforms the GA in terms of performance and success ratio for small-scale graph, while GA outperforms the SA

algorithm in terms of performance for medium- and large-scale graphs. The success ratio for the SA and GA algorithms

are close to each other for medium- and large-scale graphs. At the end, we provide several directions and suggestions

for future work.

KEYWORDS: video transcoding services; quality of service; service selection; service discovery; video delivery

system, cloud computing

I. INTRODUCTION AND BACKGROUND

In recent years, accessing video content has become more difficult for several reasons. First, the number of end-user

wire and wireless devices, such as desktop computers, smart phones, tablets, laptops, …, etc, has increased

dramatically, putting increased demands on video delivery systems. Cisco
®
 predicts that there will be 50 billion devices

connected to the Internet of Things by 2020 [1]. Second, the end-user devices themselves have better displays

characteristics, computational power, and storage, enabling higher video quality, which in turn increases the demand

and performance expectations for content delivery. For example, iPhone 6 supports 1080p HD video at 60 frames per

second (fps) and SLO-MO video at 720p [2]. Third, as the video delivery systems grow, they tend to diversify and

introduce more heterogeneity among the components. Fourth, the end-users demand more control of the Quality of

Service (QoS), to accommodate different uses of videos. Finally, there has been an unprecedented explosion in the

availability of video content and varieties of video formats. By 2018, Cisco
®
 predicts that every second, nearly a

million minutes of video content will cross the network and the IP video traffic will grow from 66% in 2013 of all the

internet traffic consumers to 79% by 2018 [3]. This is just the beginning of a video flood that will inundate the internet.

To allow any user to watch any video from any kind of display device over any type of network, any video delivery

system must be able to transcode the original video content into a compatible format (i.e., codec) that meets bandwidth

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

 Vol. 3, Issue 5, May 2015

Copyright to IJIRCCE DOI: 10.15680/ijircce.2015.0305001 3727

limitations, device-specific requirements, and end-user preferences. Video transcoding services are components within

a delivery system that transform or convert video content from one format to another (e.g., from MPEG-2 to H.264).

This transcoding process may also involve frame-size conversion, bit-rate conversion, or frame-rate conversion. These

conversions are based on the end-user preference values. The transcoding process is usually done in cases where a

target device (or playback software) does not support the original video’s format or has limited storage capacity, or in

order to convert incompatible or obsolete data to a better-supported or modern format [4]. Fig. 1 depicts the general

video transcoding process.

When an end-user wants to watch a cloud-based video through a viewer (i.e., video playback software), the viewer

needs to request a stream for that video. That request includes: a) the required video-coding format, also called the

video-compression format, and b) a desired QoS that specifies a hoped-for video quality and a tolerable delay. A video

coding format defines the structure of the video’s image and audio data. Some popular formats are H.264/MPEG-4,

MJPEG (Motion JPEG), WMV, and DivX, but there are over 20 in common use today [5]. A codec is a piece of

software that can encode video data into a particular format or decode a video from that format. A codec’s name is

often used as a synonym for the format with which it works.

In general, frame size, frame rate, video bit rate, and audio sampling rate characterize the quality of a video and part

of QoS specifications [6]. However, since the audio portion of the video accounts for only a small portion of the data, it

is often not considered in QoS-related decisions. When dealing with streaming, a desired QoS may also include a con-

straint on the amount of delay that the viewer is willing to tolerate in the stream. Even though the delay does not

directly characterize a video’s quality, it does characterize a video stream and it affects the end user’s experience. So, in

this paper, we limit the QoS properties to: frame size, frame rate, video bit rate, and the average transcoding delay.

A viewer’s desired QoS will be determined based on user preferences, viewer’s window size, device capabilities,

power-savings setting, network bandwidth, and other device-specific factors. For example, a 78.0" Diagonal UHD

display device requires around 80Mbps video bitrate [7] while a 5.5" iPhone 6 plus requires around 18Mbps video

bitrate [8]. Optimal utilization of the overall video delivery system resources comes from successfully calculating the

desired QoS values for a specific device, playback software, or network connection. These resources are either device-

specific resources, such as the computational power and the internal buffers, or network-specific resources, such as

network bandwidth. Incorrect calculation of these values might negatively impact the end-user’s subjective perception

of the video. For example, asking for higher video bitrate for a device that has low computational power or low

network bandwidth might make the device much slower than usual and the video might look jerky. In contrast, asking

for low video bitrate while the device has a high computational power and network bandwidth may generate low video

quality and negatively affect the user experience. Therefore, calculating the right QoS for a video will entirely change

the user experience regarding video quality. How a viewer computes a desired QoS is an interesting human-factors and

device-management problem, but it is outside the scope of this paper.

In general, this paper deals with the overall problem of delivering an original video in some format with a particular

quality to a viewer who wants that video in a different format and with a specific QoS. There are two parts to this

overall problem: a) transcoding or converting an original video to the desired format and quality while satisfying a

delay constraint, and b) streaming that video to the viewer. The conversion may occur in its entirety before the

streaming begins (e.g., Amazon Elastic Transcoder [9]), or it may be integrated into the streaming process (e.g.,

Akamai Media Content Delivery [10]). This paper focuses on the conversion process and, except for managing the

delay; it doesn’t matter whether the conversion occurs before streaming or in a pipeline with the streaming.

In a cloud-based video transcoding environment, the most important task is to transcode any video content in such a

way that a) the quality of the transcoded video come as close as possible to the requested QoS quality level, b) the end-

user can play the transcoded video smoothly without video freezes, c) the transcoded video can be played with the

shortest start-up time [11]. A better video quality comes from satisfying the requested QoS level. Video freezes occur

Fig. 1. Video transcoding process

Original
Video

Decoder
Intermediate

Uncompressed
Format

Transcoded
Video

Encoder

http://www.samsung.com/us/video/tvs/UN78JU7500FXZA
http://www.samsung.com/us/video/tvs/UN78JU7500FXZA
http://www.samsung.com/us/video/tvs/UN78JU7500FXZA

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

 Vol. 3, Issue 5, May 2015

Copyright to IJIRCCE DOI: 10.15680/ijircce.2015.0305001 3728

due to unavailability of video frames while video startup time is the interval between the moment when the user selects

the link and the moment when the video starts playing. The delay in start-up time is due to a delay in transcoding,

streaming, or playing. In this paper, we focus on satisfying the requested QoS level while performing the transcoding

process, which in turn helps in enhancing all the other factors.

Video transcoding for an on-demand video is a computer-intensive operation. Therefore, transcoding a large number

of on-demand videos requires a large number of transcoding servers. Similarly, a large amount of disk space is required

to store multiple transcoded versions for each source video [13]. Cloud computing provides computing and storage

resources under the pay-per-use business model [12]. Infrastructure as a Service (IaaS) such as Amazon Elastic

Computing Cloud (EC2)
1
 provides the computing resources through Virtual Machines (VM) by dynamically creating

scalable clusters of servers. Similarly, Amazon Simple Storage Service (S3)
2
 provides the storage resources. EC2 can

be used to virtually create scalable clusters of video transcoding servers that hold thousands of video transcoding

services, and similarly S3 can be used to store both the original source video and the multiple transcoded versions. In a

cloud environment, video transcoding can be performed in several different ways; for example, it is possible to map the

entire video stream to a dedicated VM to transcode the entire stream, or split the video streams into smaller segments

and independently transcode each of them in different VMs [13]. Regardless of which transcoding approach is used;

guaranteeing the QoS level of the transcoded video requires selecting and composing the best video transcoding

services from a pool of available ones, based on the viewer requirements and specifications to perform the transcoding

process.

Software as a Service (SaaS) is a model where the customers can access the services via the internet without paying

attention to how these services are maintained. The service providers are responsible for maintaining these services. In

this paper, we assume that video transcoding functionalities are available as services, which are provided by service

providers. A piece of software that converts a video from one coding format and quality to another format and quality is

called a transcoding service or simply a transcoder. A cloud-based video delivery system may have thousands of

different transcoders. If the delivery system has some transcoders that map from the requested video’s original coding

format to the viewer’s desired format, which we called compatible transcoders, then the problem becomes one of best

selection, where the system must choose a transcoder with a transcoding function whose output closely matches the

desired QoS. If the delivery systems do not have any compatible transcoders, the system will need to convert the

original video into an intermediate format(s) before converting into the required format. In this case, the problem

becomes one of composing multiple best selections. In this paper we focus on a QoS-aware video transcoding service

composition problem given input and output specifications.

Amazon Elastic Transcoder [9] is a video transcoding service provider that provides the transcoding functionality in

the cloud. There are over 30 such providers today [14]. Many of the available video transcoding services provide the

same functionality (i.e., format conversion), but with different QoS values. So, the challenge is how to select the best

video transcoding services whose output closely matches the desired QoS, then compose these services together in a

chain fashion, to satisfy the viewer requirements and specifications. Service composition is known to be an NP-hard

problem and can be modeled as a multi-dimension, multi-choice, knapsack problem (MMKP) [15]. In this paper, we

present a QoS-aware video transcoding service composition process in a distributed cloud environment where the video

transcoding services are distributed in the cloud. In the composition process, we adapt the Simulated Annealing (SA)

algorithm and the Genetic Algorithm (GA), which are generic probabilistic meta-heuristic learning algorithms to solve

the combinatorial multi-objective optimization problem. They help in locating a very good state that is a good

approximation to the global optimum of a given function in a large search space [16] [17].

Benefits of composing multiple transcoder in a chain fashion are: a) the final transcoded content would be exactly

the same as if the transcoding had been done in one step, b) more complicated transcoding processes can be done even

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

 Vol. 3, Issue 5, May 2015

Copyright to IJIRCCE DOI: 10.15680/ijircce.2015.0305001 3729

with a limited number of transcoders, c) the computations could be distributed among different processing units, d)

improved the client QoS level while properly scaling with number of clients, e) provide a clear separation between

video contents and the transcoded ones, and f) generate more powerful applications with more complex functionalities

because the functionality offered by individual services is limited [20].

Manual composition of services is time consuming, error prone, generally hard and not scalable. Therefore, many

fully or partially automatic service composition approaches have been investigated [15]. Service composition involves

creating composite services by combining different services to provide a new value-added service [15]. It does not only

improve reusability of service components, but also enables rapid development of new complex applications and

requirements [18] . Composing the best transcoders is an open problem to date; there are similar composition problems

in other domains, like web-services, that have been heavily investigated [15]. Section II reviews this related work and

categorize them into five different groups.

Section III formally defines fundamental concepts that are related to this problem domain, such as video and

transcoding service. In Section IV, we present a general model for cloud-based video delivery system independent of

any particular video transcoding composition algorithm. We use this model as a framework to evaluate our adaptation

to the SA and GA algorithms, which we introduce and describe them in sections V and VI, respectively.

We select and adapt the SA and GA algorithms to the video transcoding service composition problem domain due to

several reasons: a) SA and GA have been widely used by researchers to solve many optimization problems, b) SA and

GA algorithms have low initial cost, c) SA avoids getting stuck in local optima [16], d) GA has been widely and

efficiently used in a cloud-based service composition research [19].

Section VII discusses the evaluation results, which include two kinds of experiments. The first experiment focuses

on sensitivity analysis of a) the SA algorithm’s parameters and b) the GA algorithm’s parameters. The results of this

experiment show that for small-scale scenarios, the SA algorithm finds optimal solutions, while for medium- and large-

scale scenarios; the GA algorithm outperforms the SA algorithm in finding near optimal solutions. In the second

experiment, we focus on evaluating the proposed algorithms in terms of success ratio. Basically, we focus in this

experiment on the quality of the results (i.e., how well the proposed algorithms generate results). This experiment

shows that the SA algorithm is better than GA for small-scale scenario in terms of success ratio, while for medium- and

large-scale scenarios, both the SA and GA generate close results in terms of success ratio. Finally, we discuss these

results along with some recommendations and future directions from this preliminary study.

II. RELATED WORK

Revising literature related to composition process, we can classify the composition related work (but not limited to)

into five groups, a) web-service composition related work, b) multimedia service composition related work, c)

multimedia transcoding service composition related work, d) cloud-based service composition related work, and e) SA

and GA based service composition related work. After that we discuss the limitations of some of the revising

approaches.

A. Web-Service Composition Related Work

Web service composition has received considerable attention in recent years [15]. The problem of web service

composition shares many of the same concerns found in the video transcoding composition problem. However, it is not

easy to directly apply web service composition approaches into multimedia domain due to several reasons: a) the rich

semantic and the complex internal structure of multimedia content itself, which is a combination of different forms

(e.g., video, audio, or images), b) the size of the multimedia content makes the process of store, transcode, transport,

and receive them very expensive, c) the dynamic characteristics of the multimedia applications, such as the continuous

flow of multimedia streams, and c) the real-time processing requirements and the required QoS level [20].

Optimization algorithms like Linear Programming, Dynamic Programming, and Dijkstra-based algorithm m have

been proposed as solutions to the web service composition problem [20]. Yan Gao et al. applied Dynamic

Programming to solve the web service selection problem based on interface matching, and to dynamically select the

optimum Web services for composite services [21]. However, their approach has some limitations, like the complexity

of runtime decision. Rathore and Suman proposed a Local Selection and Local Optimization (LSLO) approach based

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

 Vol. 3, Issue 5, May 2015

Copyright to IJIRCCE DOI: 10.15680/ijircce.2015.0305001 3730

on linear programming for optimal candidate service selection for composition [22]. In spite of the advantages of their

approach, there are also some limitations. For example, they considered only the positive QoS properties. Avoiding

negative QoS properties may result in inappropriate selections that violate viewer expectations. Tongguang proposed

QoS-aware web service selection and composition approach based on Particle Swarm Optimization (PSO). The author

provided a sequential QoS utility function to calculate the overall global best solution for finding the best service

candidates for each service class [23]. The author also evaluated the performance of the proposed approach by

experiments. In spite of the efficiency of the PSO approach, he did not evaluate the QoS assurance and user satisfaction

rate.

B. Multimedia Service Composition Related Work

Xiaohui Gu and Klara Nahrstedt proposed a fully decentralized service composition framework called SpiderNet

[24]. This framework supports a distributed multimedia service composition process with a statistical QoS assurance.

The prototype implementation and the simulation results showed the feasibility and the efficiency of the SpiderNet. The

QoS properties cover both the application and the network levels. However, video transcoding composing process

requires a special handling due to the sequential dependency of the video transcoding services. Moreover, they do not

consider frame rate and frame size as QoS properties.

Moissinac proposed a semantic-based automatic discovery and composition approach for multimedia adaptation

service. The author focused on developing a semantic description of the basic adaptation services [25]. Service

composition based on semantic description of multimedia services is a good approach. However, it needs to be

extended by adding a complete description to all known categories of multimedia services.

Li et al. proposed a heuristic algorithm named Greedy-EF to solve the multimedia service composition problem in

overlay networks [18]. This composition process finds the proper service paths and routes the data flows through, so

that the resource requirements and the QoS constraints of the applications are satisfied. The simulation results showed

that their proposed approach can achieve the desired QoS assurance as well as load balancing in multimedia service

overlay networks. However, they considered only the response time and the availability of the services as QoS

requirements. In addition, they assumed that the user knows the service classes he will request. In our proposed

approach, the user has to know only the requested video file, his QoS specifications, and the required format or codec.

After that, our proposed system will find the best service path and route the data flows through, so his/her QoS

specifications are satisfied. Moreover, their QoS properties covered just only the application level.

Hossain proposed QoS-aware service composition approach for distributed video surveillance in which he used the

ant-based algorithm to solve the multi-constraints QoS routing problem [26]. He validated his proposed approach

through implementation and simulation. The implementation results showed the quality of the transcoded results in

terms of Peak Signal-to-Noise Ratio (PSNR), while the simulation results also showed the performance and satisfaction

rates.

C. Multimedia Transcoding Service Composition Related Work

For multimedia transcoding composition problem, Hossain and Saddik proposed QoS-aware multimedia transcoding

service selection process that uses Ant Colony Optimization (ACO) algorithm for selecting the most suitable

multimedia transcoding services for the desired composition process [20]. They used only average transcoding delay

and frame rate as QoS properties for the selection process. In spite of the dynamicity of their proposed algorithm, it has

more overhead than the genetic and traditional Dijkstra algorithms. Moreover, it has a long convergence time.

Alberto et al. introduced how the Service Oriented Architecture (SOA) paradigm can be applied to context-aware

multimedia communications [27]. In addition, they presented a scoring function for selecting codec for a case of

selecting transcoding functions taking into account different quality assessment metrics. They defined a new quality

analyzer model to assign a score to each transcoding service. We think that they have some limitations: a) their

evaluation focused just only on the audio codecs, b) their composition process based on the quality or the compression

ratio for each codec, while the general video transcoding composition process handle the selection of the best

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

 Vol. 3, Issue 5, May 2015

Copyright to IJIRCCE DOI: 10.15680/ijircce.2015.0305001 3731

implementation from different implementations of the same codec, c) their evaluation results are based on a single

video/audio source with a specific configurations, evaluating their approach based on a set of video/audio sources with

different configurations might help in generating more general results.

D. Cloud-based Service Composition Related Work.

Vaidas Giedrimas and Leonidas Sakalauskas proposed a simulated annealing and variable neighborhood search

algorithms for automated software services composition in the cloud [28]. The experimental results showed that their

proposed algorithm is able to approximate to best know solution in relatively short time. However, we think that their

experiment is not enough to evaluate the efficiency and the effectiveness of the proposed approach. Moreover, they do

not calculate the execution time.

Zhen et al. proposed an extensible QoS model to calculate the QoS values of service in cloud computing and a

genetic-algorithm-based approach to compose services in cloud computing [29]. The experimental results showed that

the proposed approach finds optimal solutions for small-scale scenarios. For larger-scale problems, it outperforms the

integer programming approach. However, calculating the QoS values is done offline and the penalty factor in the

fitness function is static.

E. SA and GA-based Service Composition Related Work

SA has been applied in many problem domains, such as the traveling salesman problem, job shop scheduling,

multicast routing, service selection for composite web services, and many more [30]. To date, a few others have

attempted to use simulated annealing in selecting multimedia transcoding services. G. Zhi-peng, et al. shows one of

these applications [31]. They applied the simulated annealing-based genetic algorithm (QQDSGA) to efficiently select

web services with excellent QoE. They defined a set of QoS criteria, which includes: service cost, execution time,

availability and reliability. In addition, they defined a calculation model for each one of these criteria that considers the

inconsistency of the attributes and the target direction. They also defined an objective function that makes the global

QoS value for service composition the key element of the evaluation. For QoE, they have used five customer

satisfaction degrees that indicate the general acceptability of the composite services based on customer expectation and

environment. L. Arockiam and N. Sasikaladevi developed and compared the simulated annealing with the genetic

algorithms as service selection algorithms [32]. They also concluded that the simulated annealing algorithm

outperforms the genetic algorithm in selecting reliable services. Arockiam and Sasikaladevi developed a simulated

annealing as a service selection algorithm for composite web services. Arockiam and Sasikaladevi considered

reliability as a QoS parameter to maximize the non-functional characteristics of composite web services [33].

Amiri and Serajzadeh applied GA for QoS-aware web service composition; they considered the response time,

execution cost, reputation, availability, and successful execution rate as QoS properties. They increased the

performance of the algorithm and to escape from local optimum, they enhance the selection and crossover functions.

The experiments showed the computation time of the algorithm is very low.

F. Limitations of Existing Approaches

Here we want to discuss the limitations of some of the existing composition approaches. First, most of the

aforementioned approaches considered multimedia services in general without focusing on video transcoding services

in particular. Second, some of the aforementioned approaches considered just only the QoS properties that are related to

the application itself, or that are related to the network itself. However, few of them directly focus on the QoS

properties that are related to video transcoding services such as video bit rate, frame size, frame rate, video transcoding

delay, and aspect ratio. Third, some of the existing solutions are not readily applicable to the video transcoding

composition problem due to the transcoding requirements and the inter-service dependency constraints between them.

Fourth, to the best of our knowledge, there is no previous work for composing different video transcoding services in a

distributed cloud environment based on application-specific QoS requirements using SA or GA algorithms.

III. PRELIMINARY DEFINITIONS

In this section we formalize the QoS-aware video transcoding service composition problem by introducing some

definitions for the basic concepts that are related to the problem domain. Let’s start by defining the video.

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

 Vol. 3, Issue 5, May 2015

Copyright to IJIRCCE DOI: 10.15680/ijircce.2015.0305001 3732

Definition 1: Video. A video 𝒗 represents a media file, which is a combination of audio and image streams. A video

𝒗 has a format v.f and video characteristics, and represented by 𝒗. 𝒄. A video’s v.c includes the frame size (𝒗. 𝒄. 𝒇𝒔),

frame rate (𝒗. 𝒄. 𝒇𝒓), and video bit rate (𝒗. 𝒄. 𝒃𝒓). Frame size can be further described in term of width (v.c.fs.w) and

height (v.c.fs.h). When considering video quality, it is useful to consider a frame size’s aspect ratio, which is the width

divided by the height. For convenience, we will reference a video’s aspect ratio as (v.c.fs.ar). Technically, a video’s

characteristics also include an audio bit rate or audio sample rate and size, but we exclude them from our discussion

here because they do not contribute significantly to the composition problem.

Definition 2: Quality of Service (QoS). A QoS, denoted in formulas as qos, is a specification consisting of frame

size (qos.fs), frame rate (qos.fr), bit rate (qos.br) and a tolerated delay (qos.d). We say that a v.c matches a qos, written

as v.c ≈ qos, if and only if v.c.fs = qos.fs, v.c.fr = qos.fr, and v.c.br = qos.br. As with video characteristics, we can

further describe the desired frame size in a QoS in terms of width (qos.fs.w), height (qos.fs.h), and aspect ratio

(qos.fs.ar). We scope our algorithms to these QoS properties. However, other parameters can be added such as energy

or computation consumption.

Definition 3: Video Quality and Degradation. Video quality is a measurement of how a transcoded video looks

compared to the original one or compared to a standard if the original video is unavailable. This measurement can be

evaluated either objectively or subjectively [34]. Objective evaluation techniques are mathematical models that a

computer program can automatically calculate using a predefined metrics such as Mean Square Error (MSE).

Subjective evaluations, on the other hand, require expert judgments. We represent a video’s quality as v.quality. For

any original video, v, its v.quality will be 100%. Conversely, we represent a video’s degradation as v.degradation, with

0% meaning no lost in quality. For any original video, v, its v.degradation will be 0%.

Definition 4: Viewer’s Request. A viewer’s request, 𝑸, consists of a required video format, 𝑸. 𝒇, and a desired

QoS, 𝑸. 𝒒𝒐𝒔. Note 𝑸. 𝒇 is a hard constraint that must be satisfied, whereas 𝑸. 𝒒𝒐𝒔 is a soft constraint. In this paper, we

will use the viewer requirement to represent the required video format and the viewer specification to represent the

desired QoS level. The video delivery system must provide a video in the 𝑸. 𝒇 format and should come as close to

meeting the 𝑸. 𝒒𝒐𝒔 as possible. Each viewer request has a cost associated with it and can be represented as 𝑸. 𝒄𝒐𝒔𝒕.

Definition 5: Video Transcoding Function. We define a video transcoding function as a data processing function

𝑡(𝑥
𝑓1 ,𝑓2𝑐1 ,𝑐2
 𝑦) that converts input video 𝑥, where 𝑥. 𝑐 = 𝑡. 𝑐1 and 𝑥. 𝑓 = 𝑡. 𝑓1, to generate an output video 𝑦, where

𝑦. 𝑐 = 𝑡. 𝑐2 and 𝑦. 𝑓 = 𝑡. 𝑓2. A video transcoding function takes time to execute and therefore introduces a delay into

the streaming of a video. We represent the anticipated delay of t as t.d. For convenience of comparing the expected

output of a transcoding function t with a requested QoS (Q.qos), we combine the t.c2 and t.d properties into an

aggregate property, called t.qos. Each video transcoding function 𝑡 has a cost associated with it, 𝑡. 𝑐𝑜𝑠𝑡. This cost

represents the cost that we need to pay in terms of QoS properties when the transcoding system uses this function. It is

obvious that the transcoding system should select the transcoding function that has a cost value (i.e., 𝑡. 𝑐𝑜𝑠𝑡) that is

close to the cost value of the viewer request (i.e., 𝑄. 𝑐𝑜𝑠𝑡).

Definition 6: Video Transcoder, aka, transcoding service. As mentioned earlier, a video transcoder is a piece of

software that implements one or more video conversions, i.e., video transcoding functions. We restrict a transcoder

such that all of the functions it implements have the same output format (f) and the same video characteristics (c). This

restriction simplifies the discussion to follow without loss of generality. Furthermore, to simplify the selection and the

composition of transcoders, we assume that a transcoder has to handle all possible input video characteristics (c) for the

format that accepts. This assumption is actually consistent with most transcoder implementations. Given the above

simplification and assumption, we can formally define a transcoder T as the implementation of a family of

functions: 𝑡1, 𝑡2, … 𝑡𝑛 , where 𝑡𝑖 ∈ 𝑇, (1 ≤ 𝑖 ≤ 𝑛) with an input format (T.fin), an output format (T.fout), and output

video characteristics (T.c).

Definition 7: Compatible Transcoders. Given an original video v and viewer request Q, a transcoder T is a

compatible transcoder for v and Q, which we can represent it as 𝑐𝑜𝑚𝑝 𝑣, 𝑄, 𝑇 , if and only if v.f = T.fin and Q.f =

T.fout. For example, assume that delivery system has 1000 video transcoding functions that convert from H.264 to

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

 Vol. 3, Issue 5, May 2015

Copyright to IJIRCCE DOI: 10.15680/ijircce.2015.0305001 3733

WMV1, but with different output video characteristics. If an original video had a H.264 format and the viewer wanted a

WMV1 format, all 1000 video transcoding functions would be compatible transcoders.

IV. GENERAL CLOUD-BASED VIDEO DELIVERY SYSTEM

Fig. 2 shows a use case for cloud-based video delivery system where user A can upload any video to the cloud while

user B can request and play that video using any device regardless of the original video format. If the original video

format is not supported at the user B’s device or playback software, this video must be transcoded to a new format that

the user B’s device supports. To allow any user to watch any cloud-based video from any kind of display device over

any type of network, the cloud-based video delivery system must be able to transcode any video. Video transcoding is a

computationally intensive operation and due to the limited computational power for the end-user’s devices; it may not

be suitable to perform the transcoding process at the end-user side. Therefore, it is usually performed at the server-side

[13].

Fig. 2. A use case for cloud-base video delivery system

On-demand video transcoding has many challenges: 1) it must be done on-the-fly in the real-time, 2) it must meet

the viewer’s requirement and specification. In this paper, we will focus on the second challenge. Guarantee the

viewer’s requirement and specification requires selecting the best video transcoding services, from a pool of available

ones that satisfy the required QoS level to perform the transcoding process.

If the requested video is not available in the requested format, the cloud-based video delivery system should

transcode the original video to the requested format and then streams the transcoded video to the end-user. If the cloud-

based video delivery system does not have any compatible transcoders, the system will need to convert the original

video into an intermediate format(s) before converting it into the required format. In this case, discovering these

multiple transcoders and composing them into a chain fashion to meet the viewers’ requirement and specification is the

challenge. We refer to this chain as a composition chain and we can formally define the composition chain as follows:

Definition 8: Composition Chain (CC). Given a viewer request, 𝑄 and a requested video, 𝑣. The Composition

Chain is a set of transcoders 𝐶𝐶 = {𝑇1 , 𝑇2, … , 𝑇𝑖}, such that the first transcoder in this chain accepts the requested

original video as an input and the last transcoder in this chain convert the requested video to the requested format as an

output. In other words, 𝑇1 . 𝑓𝑖𝑛 = 𝑣. 𝑓 and 𝑇2 . 𝑓𝑖𝑛 = 𝑇1 . 𝑓𝑜𝑢𝑡 and so on until 𝑇𝑖 . 𝑓𝑖𝑛 = 𝑇𝑖−1. 𝑓𝑜𝑢𝑡 and 𝑇𝑖 . 𝑓𝑜𝑢𝑡 = 𝑄. 𝑓.

The sequential format dependency in this composition chain should be satisfied and meets the viewer’s requirement.

To simplify this process, we consider each conversion or transcoding process as a level of transcoding, so, when

converting from MPEG-2 to H.264, we consider this as a one-level conversion or one-level transcoding. Two-level

transcoding requires transcoding the video into an intermediate format before transcoding it into the requested format.

To meet the real-time video transcoding requirements, finding the composition chain should be done on-the-fly in the

real-time in addition to the transcoding and streaming processes. Fig. 3 shows an example of a three-level video

transcoding chain. Deciding the maximum number of levels the transcoding system might have (i.e., the chain’s length)

is an interesting cost-efficiency trade off problem, but is outside the scope of this paper and we will not consider it as a

bottleneck.

Fig. 3. Three-level video transcoding composition chain

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

 Vol. 3, Issue 5, May 2015

Copyright to IJIRCCE DOI: 10.15680/ijircce.2015.0305001 3734

Based on the example given in Fig. 3, if the format of the original video is MPEG-2 and the end-user wants this

video in DivX format and assume that the cloud-based video delivery system has just the following transcoders T1, T2,

and T3 as follows: T1 transcodes from MPEG-2 to H.264, T2 transcodes from H.264 to MJPEG, and T3 transcodes from

MJPEG to DivX. Each one of these transcoders (i.e., T1, T2, and T3) might have hundreds or thousands of video

transcoding functions with different QoS values. Because the format of the requested video (i.e., MPEG-2) is different

than the requested format (i.e., DivX), the cloud-based video delivery system must transcode the original video to the

requested format. It is obvious that the cloud-based video delivery system that we provide in Fig. 3 has no compatible

transcoder for the requested video and the requested format (i.e., no transcoder that directly convert from MPEG-2 to

DivX). Therefore, the cloud-based video delivery system should discover the transcoders that meet the viewer

requirements (i.e., the hard constraints). Based on the discovered transcoders, there will be three transcoders that

participate in the composition chain in a sequential order, which means that there will be a three-level transcoding

process as shown in Fig. 3.

In the three-level video transcoding composition chain that Fig. 3 presents, the original video is send to the T1 in

which it transcodes the original video to generate a new video in a H.264 format, while T1 performs the transcoding

process, it starts sending the transcoded frames to T2 to transcode these frames to MJPEG format, while T2 performs the

transcoding process, it starts sending the transcoded frames to T3. Finally, when T3 starts receiving the transcoded

frames, it performs the transcoding process to convert these frames to DivX, while T3 performs the transcoding process,

it starts sending the transcoded frames to the streaming system that streams these frames to the end-user’s device. This

process should be done on-the-fly in real-time. For best utilizing, each transcoder save its transcoded streams into a

virtual storage device for later on requests. Assume that the cloud-based video delivery system has hundreds or

thousands of each one of the above transcoders (i.e., T1, T2, and T3) and each one has different QoS specifications. The

problem now is how we can select and compose these transcoding functions together in a way that guarantee the

required QoS level during the transcoding process and guarantee the required QoS level of the video that is send to the

end-user’s device. We will start describing the solution by first, describing a general model for on-demand cloud-based

video distribution system in the following paragraphs.

Fig. 4 shows a general model for on-demand cloud-based video distribution system, which contains cloud-based

video delivery system. Cloud-based video delivery system consists of three main sub-systems: a) cloud-based service

management system, b) cloud-based video transcoding system, and c) cloud-based video streaming system. In this

paper, we focus on the cloud-based service management system and, specifically, on the service composition process.

Fig. 4. A general model for on-demand cloud-based video distribution system

In this model, all the available transcoders and their transcoding functions, which are provided from the service

providers, are captured in a Service Registry. Step 1, which only needs to occur once after the Service Registry is

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

 Vol. 3, Issue 5, May 2015

Copyright to IJIRCCE DOI: 10.15680/ijircce.2015.0305001 3735

loaded, normalizes 𝑡𝑗 . 𝑞𝑜𝑠. 𝑞𝑖 for each video transcoding function, 𝑡𝑗 , in each transcoder, T, in the Service Registry,

using the standard deviation normalization, 𝑛𝑜𝑟𝑚 𝑡𝑗 . 𝑞𝑜𝑠. 𝑞𝑖 as in [35] as follows:

𝑛𝑜𝑟𝑚 𝑡𝑗 . 𝑞𝑜𝑠. 𝑞𝑖 =

2, 𝑖𝑓 𝑡. 𝑞𝑜𝑠. 𝑞𝑖 − 𝜇 𝑇. 𝑐. 𝑞𝑖) > 2 ∗ 𝛿 𝑇. 𝑐. 𝑞𝑖

 0, 𝑖𝑓 (𝑡. 𝑞𝑜𝑠. 𝑞𝑖 − 𝜇 𝑇. 𝑐. 𝑞𝑖 < −2 ∗ 𝛿 𝑇. 𝑐. 𝑞𝑖)

𝑡.𝑞𝑜𝑠 .𝑞𝑖−𝜇 𝑇.𝑐.𝑞𝑖

2∗𝛿 𝑇.𝑐.𝑞𝑖
 + 1, 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

 (1)

where 𝑞𝑜𝑠. 𝑞𝑖 is the value of the QoS property 𝑖, 𝑞𝑖 ∈ 𝑞𝑜𝑠. The QoS properties are qos.fs.w, qos.fs.h, qos.fs.ar, qos.fr,

qos.br, and qos.d. 𝜇 𝑇. 𝑐. 𝑞𝑖 and 𝛿(𝑇. 𝑐. 𝑞𝑖) are the mean and the standard deviation of the QoS property 𝑞𝑖 for a

transcoder 𝑇, respectively. Standard deviation normalization transforms data in more efficient way than decimal

normalization, using means and standard deviation by picking up the most balanced instance instead of one that is

better in one QoS, e.g., delay, and weak in another, e.g., frame rate [35]. We calculate the mean value for each QoS

property 𝑖 for each video transcoder 𝑇 that contains 𝑚 video transcoding functions as follows:

𝜇 𝑇. 𝑐. 𝑞𝑖 =
1

𝑚
∗ (𝑡𝑗 . 𝑞𝑜𝑠. 𝑞𝑖)

𝑚

𝑗=1

(2)

Also, we calculate the standard deviation value for each QoS property 𝑖 for each video transcoder 𝑇 that contains 𝑚

video transcoding functions as follows:

𝛿 𝑇. 𝑐. 𝑞𝑖 =
1

𝑚
 ((𝑡𝑗 . 𝑞𝑜𝑠. 𝑞𝑖) − 𝜇 𝑇. 𝑐. 𝑞𝑖)2

𝑚

𝑗=1
 (3)

For QoS property that are better with smaller values (e.g., delay), 𝑛𝑜𝑟𝑚 𝑡𝑗 . 𝑞𝑜𝑠. 𝑞𝑖 is further transformed into

𝑛𝑜𝑟𝑚′ 𝑡𝑗 . 𝑞𝑜𝑠. 𝑞𝑖 as follows [35]:

𝑛𝑜𝑟𝑚′ 𝑡𝑗 . 𝑞𝑜𝑠. 𝑞𝑖 = 2 − 𝑛𝑜𝑟𝑚 𝑡𝑗 . 𝑞𝑜𝑠. 𝑞𝑖 (4)

After calculating the normalized value for all the QoS properties for each video transcoding function 𝑡𝑗 that has 𝑛

QoS properties, we calculate the cost for each video transcoding function as follows:

𝑡𝑗 . 𝑐𝑜𝑠𝑡 = (
1

𝑛
∗ 𝑛𝑜𝑟𝑚(𝑡𝑗 . 𝑞𝑜𝑠. 𝑞𝑖))𝑛

𝑖=1) (5)

It is obvious that we complete this step before the viewer submits a request. So, we decoupled its computation time

from the computation time of the proposed algorithms.

The normalization step is a very important step for two reasons: a) each QoS property has different unit; for

example, delay in millisecond while bit-rate in kilobits per second, and b) some properties are better with smaller value

while others are better with bigger values.

Every time a viewer submits a request, 𝑄, for specific video 𝑣, the system needs to normalize 𝑄. 𝑞𝑜𝑠. 𝑞𝑖 using (1).

This process is Step 2 in Fig. 4. We calculate the viewer request’s cost, 𝑄. 𝑐𝑜𝑠𝑡, as follows:

𝑄. 𝑐𝑜𝑠𝑡 = (
1

𝑛
∗ 𝑛𝑜𝑟𝑚(𝑄. 𝑞𝑜𝑠. 𝑞𝑖))

𝑛

𝑖=1
) (6)

where 𝑛 is the total number of QoS that are available from the viewer request.

Step 3 uses 𝑄. 𝑓 and the original requested video, 𝑣. 𝑓 to discover a set of transcoders that are available in the Service

Registry and satisfy the viewer’s requirements. In other words, service discovery step discovers the composition chain.

Discovering the composition chain does not mean finding the actual video transcoding functions. Basically, it helps

us in finding a set of transcoders that meet the viewer requirement. In addition satisfying the viewer specification is

very important step and we have to guarantee this. Finding the best composition of the discovered video transcoding

functions to satisfy the viewer specifications requires discovering all the possible combinations of these candidate video

transcoding functions, which can be very expensive in terms of computation time. Therefore, we propose the SA and

GA algorithms as candidate solutions to solve this problem. Step 4 is the most relevant to this paper; in which we apply

the SA or GA algorithms to find the best set of video transcoding functions that satisfy the viewer specifications.

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

 Vol. 3, Issue 5, May 2015

Copyright to IJIRCCE DOI: 10.15680/ijircce.2015.0305001 3736

Once the best video transcoding functions that satisfy the viewer requirement and specifications have been

discovered and identified, then the processes, represented by Steps 5 and 6, perform the actual transcoding and then

streaming the transcoded video to the end-user’s device.

V. VIDEO TRANSCODING COMPOSITION PROCESS

In order to support real-time multimedia applications such as video/audio streaming, video-on-demand or video

conferencing over any type of network; the desired QoS should be satisfied in addition to the basic video format

conversion. Notice that Step 4 shown in Fig. 4 does not completely describe the composition process. In this section,

before start explaining the composition process, we want to assume that the cloud-based video delivery system is

running in the cloud. Hence, the cloud-based video transcoding system that holds hundreds or thousands video

transcoding functions are running in the cloud as well. In addition, we assume that these transcoding functions are

services running in a number of virtual machines in the cloud.

Let us consider a video transcoding function network as a directed acyclic graph, G T, L ; so, we can formally define

this graph as follows.

Definition 9: Directed Acyclic Video Transcoding Function Graph 𝑮(𝑻, 𝑳). We can consider a video transcoding

network as a directed acyclic graph 𝐺(𝑇, 𝐿), where 𝐺. 𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑛} denotes a set of nodes that represent the video

transcoding functions, and 𝐺. 𝐿 = {𝑙1, 𝑙2 , … 𝑙𝑚 } denotes a set of links that connect these video transcoding function

nodes. We also can define the total number of video transcoding functions nodes that are available in the graph G

by 𝑇 = 𝑛, while the total number of links that are available in the graph G is 𝐿 = 𝑚. Each link, 𝑙𝑘 where (1 ≥ 𝑘 ≥
𝑚) can be indicated by an ordered pair of video transcoding function nodes (𝑖, 𝑗) and can be represented as 𝑙𝑖𝑗 where

𝑙𝑖𝑗 is said to originate from node 𝑖 and terminated at node 𝑗. Therefore, for 𝑙𝑘 or 𝑙𝑖𝑗 , 𝑙𝑖𝑗 . 𝑠𝑜𝑢𝑟𝑐𝑒 = 𝑖

and 𝑙𝑖𝑗 . 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 = 𝑗. We will use 𝑙𝑘 and 𝑙𝑖𝑗 interchangeably if there is no confusion. Each link 𝑙𝑘 is associated with

a positive real number 𝑙𝑘 . 𝑐𝑜𝑠𝑡 that represents the cost of the desired video transcoding function node. Therefore, we

can calculate the cost of the link 𝑙𝑘 as follows:

𝑙𝑘 . 𝑐𝑜𝑠𝑡 𝑜𝑟 𝑙𝑖𝑗 . 𝑐𝑜𝑠𝑡 = 𝑡𝑗 . 𝑐𝑜𝑠𝑡
(7)

Fig. 5 shows a sample directed acyclic graph of the video transcoding functions with four transcoders 𝑇 =
{𝑇1 , 𝑇2 , 𝑇3 , 𝑇4} that have a, b, c, d video transcoding functions, respectively. Fig. 5 also shows three different views of

the proposed QoS-aware video transcoding service composition process: a) the abstract view, b) the graph view, and c)

the composition view. The abstract view shows all the available video transcoders that are available in the system. This

view represents the functional sequence dependency between all these transcoders. It also shows the video transcoding

composition chain.

The graph view represents a directed acyclic graph that consists of distributed video transcoding functions. Each

node in this graph represent a video transcoding function which has several input and output ports for receiving input

messages and sending output messages, these messages represent the video streams. Based on Fig. 5 and assume that

the cloud-based video delivery system has just these four transcoders (i.e., {𝑇1 , 𝑇2 , 𝑇3 , 𝑇4}). 𝑇1 converts from MPEG-2 to

H.264, 𝑇2 converts from H.264 to MJPEG, 𝑇3 converts from MJPEG to DivX, and 𝑇4 coverts from DivX to WMV1.

Each transcoder contains a set of video transcoding functions that have different QoS values; 𝑇1 has 𝑎 video

transcoding functions, 𝑇2 has 𝑏 video transcoding functions, 𝑇3 has 𝑐 video transcoding functions, and 𝑇4 has 𝑑 video

transcoding functions. 𝑆 and 𝐷 represent the source and the destination nodes, which represent the original video

content and the transcoded one based on the viewer request, respectively. All of the links in Fig. 5 have cost that is

calculated using (5). For simplicity and presentation perspective, we assign the cost for few of them to keep the graph

simple to read and follow. For example, the cost for transcoding the original video using 𝑡1.1 transcoding function in

level 1 is 0.7 and the cost of transcoding the original video using 𝑡1.1 transcoding function in level 1 and 𝑡2.1

transcoding function in level 2 is (0.7 + 0.4) =1.1 and the cost of transcoding the original video using 𝑡1.1 transcoding

function in level 1 and 𝑡2.1 transcoding function in level 2 and 𝑡3.2 transcoding function in level 3 is (0.7 + 0.4 + 0.9) =

2.0.

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

 Vol. 3, Issue 5, May 2015

Copyright to IJIRCCE DOI: 10.15680/ijircce.2015.0305001 3737

Fig. 5. Different views of the QoS-aware video transcoding composition process.

The last view is the composition view, which represents the video transcoding composition path from S to D that

includes a set of video transcoding functions in between. These transcoding functions perform the real transcoding in a

chained fashion as we described above. Finding the composite view refers to finding a path in a graph from the source

node to the destination node based on viewer requirements. Based on the above example, the cost of the path in the

composition view: {𝑆, 𝑡1.2 , 𝑡2.1, 𝑡3.3, 𝑡4.2, 𝐷} is (0.6+0.4+0.1+0.3+0.0) = 1.4. We can formally define the video

transcoding composition path as follows:

Definition 10: Video Transcoding Composition Path 𝒑(𝑺, 𝑫, 𝑮). Video transcoding composition path 𝑝(𝑆, 𝐷, 𝐺)

in a directed acyclic graph 𝐺 from the source node 𝑆 to the destination node 𝐷 is a set of links 𝐿 represented by

𝑝. 𝐿 where 𝐿 = 𝑙1, 𝑙2 , … , 𝑙𝑟 ∈ 𝐺. 𝐿, and a set of nodes represented by 𝑝. 𝑁 where 𝑁 = {𝑡1, 𝑡2, … 𝑡𝑛} ∈ 𝐺. 𝑇 and

𝑙1 . 𝑠𝑜𝑢𝑟𝑐𝑒 = 𝑆 and 𝑙𝑟 . 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 = 𝐷 and (𝑟 > 1). Each path has a cost, 𝑝 𝑆, 𝐷, 𝐺 . 𝑐𝑜𝑠𝑡. For simplicity, we can

represent the cost by 𝑝. 𝑐𝑜𝑠𝑡 that represents the aggregate or the objective function of the QoS values and we can define

it as follows:

𝑝 𝑆, 𝐷, 𝐺 . 𝑐𝑜𝑠𝑡 = 𝑝. 𝑐𝑜𝑠𝑡 = 𝑙𝑖 . 𝑐𝑜𝑠𝑡
𝑟
𝑖=1 (8)

Based on the above graph view, we apply one of the proposed algorithms (SA or GA) to find the best composite

view. Finding the best composition path refer to finding the best path that meets the viewer QoS requirements and

specification. This path should minimize the absolute difference between the viewer QoS values and the cost of all the

discovered paths. We can formally define the best QoS-aware video transcoding functions composition path as follows:

Definition 11: The Best QoS-aware Video Transcoding Functions Composition Path 𝒑′(𝑺, 𝑫, 𝑮). Given a

viewer request Q and a set of possible video transcoding function paths 𝑃 = {𝑝1 , 𝑝2 , … , 𝑝𝑠} from source node 𝑆 to

destination nodes 𝐷, we can define the best QoS-aware video transcoding functions composition path as a path that has

the lowest absolute difference value, among all other possible paths, between its cost value and the cost value of the

viewer request. Formally, we can define the best video transcoding composition path 𝑝′ ∈ 𝑃 as follows:

𝑝′ 𝑆, 𝐷, 𝐺 → ∀𝑝𝑖 𝑤𝑕𝑒𝑟𝑒 𝑝𝑖 ∈ 𝑃 𝑎𝑛𝑑 1 ≤ 𝑖 ≤ 𝑠 ,
∃𝑝𝑗 𝑤𝑕𝑒𝑟𝑒 1 ≤ 𝑗 ≤ 𝑠 𝑎𝑛𝑑 𝑝𝑗 ∈ 𝑃 𝑠𝑢𝑐𝑕 𝑡𝑕𝑎𝑡

𝑎𝑏𝑠 𝑝𝑗 . 𝑐𝑜𝑠𝑡 − 𝑄. 𝑐𝑜𝑠𝑡 ≤ 𝑎𝑏𝑠(𝑝𝑖 . 𝑐𝑜𝑠𝑡 − 𝑄. 𝑐𝑜𝑠𝑡)‡

(9)

Table 1 shows examples of different viewer requests and the composition chain for each one of them based on the

transcoders that are available in Fig. 5. We assume that the original video format is MPEG-2. In this paper, we focus on

a composition chain that contains more than one transcoder.

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

 Vol. 3, Issue 5, May 2015

Copyright to IJIRCCE DOI: 10.15680/ijircce.2015.0305001 3738

Table 1. Examples of some viewer requests

Original Video Requested Format Composition Chain

MPEG-2

WMV1 {𝑇1, 𝑇2, 𝑇3, 𝑇4}
DivX {𝑇1, 𝑇2, 𝑇3}

MJPEG {𝑇1, 𝑇2}

In general, we can summarize the video transcoding service composition process into the following steps:

Step 1: Calculate the cost of each video transcoding function using (5) and calculate the viewer request cost using

(6).

Step 2: Analyze the viewer request and discover the 𝑚 transcoders as shown in the abstract view in Fig. 5.

Step 3: Discover the video transcoding functions for each transcoder. Each transcoder 𝑇𝑖 might have 𝑛𝑖 transcoding

functions.

Step 4: From the transcoding function graph, we have 𝑛1 ∗ 𝑛2 ∗ 𝑛3 ∗ … ∗ 𝑛𝑚 available composition paths.

Step 5: Apply one of the proposed algorithms (SA or GA) to find the optimal composition path. This done by

discovering the possible paths and calculate the cost of each discovered path using (8). Then, calculate the difference

between the cost of each discovered path and the viewer’s cost and then select the path that has the minimum difference

value using (9) as the optimal composition path.

VI. SIMULATED ANNEALING ALGORITHM FOR VIDEO TRANSCODING COMPOSITION PROCESS

In this section, we discuss how we adapt the SA algorithm into the video transcoding service composition problem

domain. SA algorithm models the annealing process in metallurgy. It involves heating up the material and then cooling

it in a controlled way that helps in increasing the size of its crystals and reducing their defects, thus reaching a state

with lower system energy [16].

We divide the SA algorithm into six parts: a) parameters configuration, b) the initial solution, c) the cost function, d)

the neighboring function, e) the acceptance probability, and f) the cooling schedule. The following sub-sections

describe these parts in more details.

A. Parameters configuration

In this part, we configure the parameters of the SA algorithm, mainly, the temperature and the cooling rate. Usually,

the algorithm starts with a high temperature value, and then this value starts decreasing based on the cooling schedule

to reach the lowest temperature. The cooling schedule is user defined and it is usually low enough to reflect the slow

cooling. Function 1 describes this configuration process.

B. The Initial solution

After configured the parameters, we get to the initial solution. In the initial solution, we randomly select a video

transcoding function from each level in the directed video transcoding function graph. We ensure the feasibility of the

initial solution by adding the source and the destination to it. Function 2 describes the initialization process. A feasible

solution is a solution or a composition path that satisfies the hard constraints based on the viewer requirements.

C. The cost function

Function 3 describes how we calculate the cost of any path. Basically, the cost of any path is the summation of cost

of the links that are participating in that path. In essence, we use (7) to calculate the cost of any path.

D. Generating the neighboring path

Generating the neighboring solution or path based on the current one is one of the main parts in the SA algorithm.

Function 4 shows the neighbor function in which we randomly select a neighbor path to the current one from the

directed acyclic video transcoding function graph. This function randomly selects a video transcoding function (i.e.,

node) from each level in the graph and then composing them together to generate a feasible path. We ensure the

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

 Vol. 3, Issue 5, May 2015

Copyright to IJIRCCE DOI: 10.15680/ijircce.2015.0305001 3739

feasibility of the new neighboring path by adding the source and the destination nodes to it. Therefore, the new

neighboring path satisfies the viewer request’s hard constraints.

E. The acceptance probability

After generating the neighboring path, we use the acceptance probability function to calculate the acceptance

probability based on the combination of the currentCost, newCost, userCost, and the 𝑡𝑒𝑚𝑝. This function compares

the cost of the two paths with respect to the userCost. We described above how we calculate these costs. The

acceptance probability function helps the SA algorithm to intelligently accept worse solutions and escape from the local

optima that are worse than the global one [36]. The acceptance probability is a non-negative real number between 0 and

1. Function 5 describes the acceptance probability function.

F. The cooling schedule

The cooling schedule is a schedule that represents the decreasing value of the temperature. The temperature value

should be decreased slowly and it depends on a pre-defined user value. Line 16 in Algorithm 1 shows the cooling

schedule that we used.

Now, we want to combine all the above six parts together in one part to describe the SA algorithm. Algorithm 1

describes the overall SA algorithm. At the first step, we call the conFig.(temp0, γ) function (see Function 1) to assign

an initial values for the temperature and the cooling rate. This represents part 1 in the Algorithm 1. After that, we

initialize the initial path by calling the Initialization(𝐺, 𝑄. 𝑓, 𝑣. 𝑓) function (see Function 2). Then, assign the

initialPath to the currentPath. After that we calculate the currentCost by using the getCost(currentPath) function
(see Function 3). Then, we declared the bestPath and assign the currentPath to the bestPath and the currentCost to

the bestCost. This represents part 2 in Algorithm 1. In part 3 in Algorithm1, the loop part, we use the temp as a loop

condition. Inside the loop, first we use neighbor(G, p) (see Function 4) to find a neighbor path and assign it to

newPath. Then we calculate its cost and assign it to the newCost. Then we check if the value that is returned by

calling the 𝑎𝑐𝑐𝑒𝑝𝑡𝑃𝑟𝑜𝑏(𝑡𝑒𝑚𝑝, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐶𝑜𝑠𝑡, 𝑢𝑠𝑒𝑟𝐶𝑜𝑠𝑡, 𝑛𝑒𝑤𝐶𝑜𝑠𝑡) function is greater than a random number between

0 and 1, if so, we accept the newPath as the currentPath. Then we compare the currentCost with the bestCost, if the

absolute difference between the currentCost and the userCost is less than the absolute difference between the

bestCost and the userCost, we assign the currentPath to the bestPath and the currentCost to the bestCost. The last

step in the loop part is the cooling step in which we decrement the temperature according to the cooling rate. Finally,

we repeat the third part until the loop’s condition becomes false, and then, at the end, we return the bestPath as an

optimal path.
Function 1. Parameters configuration: 𝑐𝑜𝑛𝑓𝑖𝑔(𝑡𝑒𝑚𝑝0 , 𝛾0)

Output: initial value for the temperature, 𝑇𝑒𝑚𝑝 and the
initial value of the cooling rate, 𝛾.

1. 𝑡𝑒𝑚𝑝= 𝑡𝑒𝑚𝑝0;
2. 𝛾 = 𝛾0;

 Function 5. The acceptance probability:
𝑎𝑐𝑐𝑒𝑝𝑡𝑃𝑟𝑜𝑏(𝑡𝑒𝑚𝑝, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐶𝑜𝑠𝑡, 𝑢𝑠𝑒𝑟𝐶𝑜𝑠𝑡, 𝑛𝑒𝑤𝐶𝑜𝑠𝑡)

Input:
 Temperature, temp.
 Current cost, currentCost.
 User cost, userCost.
 New cost, newCost.
Output: random value between 0 and 1 represent the
acceptance probability, accept.

1. accept = 0;
2. if (|newCost - userCost |<| currentCost - userCost |)
3. accept = 1.0;
4. else
5. accept =

exp(currentCost −userCost −(newCost −userCost)/temp)
6. end if
7. return accept;

Function 2. Initial solution: Initialization(𝐺, 𝑄. 𝑓, 𝑣. 𝑓)

Input:
 Complete Video transcoding function graph, 𝐺(𝑇, 𝐿).
 Viewer requested format (i.e., 𝑄. 𝑓), to capture the

destination node, 𝐷.
 Original Video format (i.e., 𝑣. 𝑓), to capture the

source node, S.
Output: An initial path, 𝑝 that connects source with
destination,.

1. initial path 𝑝 = null;
2. video transcoding function 𝑡 = null;

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

 Vol. 3, Issue 5, May 2015

Copyright to IJIRCCE DOI: 10.15680/ijircce.2015.0305001 3740

VII. GENETIC ALGORITHM FOR VIDEO TRANSCODING COMPOSITION PROCESS

In this section, we discuss how we adapt the GA algorithm into the video transcoding service composition problem

domain. GA is a meta-heuristic searching algorithm used to generate useful solutions to the optimization problems in a

large search space. It depicts the biological evaluation of genes and chromosomes. GA works on a search space called

population that contains a set of randomly generated solutions called chromosomes. After £ iterations, this population is

evolved toward a better state. Each chromosome has a fitness value that defines the quality of the solution. GA uses

adaptive search strategy in which it evolves the population by finding a set of best solutions, and then performs the

crossover operation to create a new generation or population. The weaker candidates get less chance to be in the new

generation while the best candidates from the previous generation are moving to the new generation. Commonly, the

algorithm terminates when either a maximum number of generations has been produced, or a satisfactory fitness level

has been reached.

In video transcoding service composition problem domain we used the graph to represent the search space. The

population represents a set of composition paths. Each chromosome represents a composition path. We calculate the

fitness of each chromosome by using (7). Similarly, we can divide the GA algorithm into three parts: a) configuration

part, b) initialization, and c) the loop part, in the following sub-sections, we will describe each part in details.

3. Add 𝑆 to 𝑝; // based on 𝑣. 𝑓
4. for (i←1 to G.numberOfLevels) do
5. 𝑡 = randomly select t from 𝐺. 𝑇(𝑖)
6. add 𝑡 to 𝑝
7. end for
8. add 𝐷 to 𝑝 // based on 𝑄. 𝑓
9. return 𝑝

Algorithm 1: Simulated Annealing Composition
Algorithm: 𝑆𝐴(𝐺, 𝑄. 𝑐𝑜𝑠𝑡, 𝑄. 𝑓, 𝑣. 𝑓)

Input:
 Directed acyclic video transcoding function

graph, 𝐺(𝑇, 𝐿).
 User cost, 𝑄. 𝑐𝑜𝑠𝑡, and the requested format, 𝑄. 𝑓.
 Original Video format, 𝑣. 𝑓.

Output: Near optimal video transcoding composition path.

Part 1: Configuration:
1. calling config(temp0 , γ0) /* see Function 1 */
Part 2: Initialization

/* see Function 2 */
2. currentPath = Initialization(𝐺, 𝑄. 𝑓, 𝑣. 𝑓)
3. currentCost = getCost(currentPath);/* see Function 3

*/
4. bestPath = currentPath;
5. bestCost = currentCost;
Part 3: Loop
 while (temp > 1)
6. newPath = neighbor(𝐺, 𝑝); /* see Function 4 */
7. newCost = getCost(newPath);
8. if

(
𝑎𝑐𝑐𝑒𝑝𝑡𝑃𝑟𝑜𝑏 𝑡𝑒𝑚𝑝, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐶𝑜𝑠𝑡, 𝑄. 𝑐𝑜𝑠𝑡, 𝑛𝑒𝑤𝐶𝑜𝑠𝑡

 > rand ()) /* see Function 5 */
9. currentPath = newPath;
10. currentCost = newCost;
11. end if
12. if (|currentCost – Q.cost | < | bestCost - Q.cost |)
13. bestPath = currentPath;
14. bestCost = currentCost;
15. end if
16. temp = temp * (1- 𝛾);
17. end while
18. return bestPath;

Function 3. Getting path cost: getCost (𝑝)

Input: Current path, 𝑝.
Output: non-negative real number shows the cost of the
current path.

1. cost = 0;
2. for (i←1 to p.size()) do //p.size = number of links in p

path
3. cost +=p.getLink(i).cost; // see (7)
4. end for
5. return cost;

Function 4. Generating neighbor path: neighbor(𝐺, 𝑝)

Input:
 Complete video transcoding function graph, 𝐺(𝑇, 𝐿).
 Current path, 𝑝.

Output: neighbor path, neigborePath.
1. neigborePath = null;

2. video transcoding function t = null;
3. Add p. S to neigborePath
4. for (i←1 to G.numberOfLevels) do
5. t = randomly select t from G.T(i)
6. add t to neigborePath;
7. end for
8. add p. D to neigborePath;
9. return neigborePath;

http://en.wikipedia.org/wiki/Chromosome

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

 Vol. 3, Issue 5, May 2015

Copyright to IJIRCCE DOI: 10.15680/ijircce.2015.0305001 3741

A. Parameters configuration

In this part, we configure the parameters of the GA algorithm, mainly, the population size and the number of

iterations. These parameters are user defined and their values depend on the problem domain and size. Function 6

describes this configuration process.

B. The Initialization

After configured the parameters, we get to the initialization step. In this step, we create a population which contains

a set of video transcoding composition paths that are stored in an array structure. The size of this array depends on the

population size which is a user defined value from the previous configuration step. Each element in this array

represents a feasible video transcoding composition path. Function 7 describes the initialization process.

C. The Loop

In this part, we used a for-loop structure that iterate £ times, the value of the £ is a user-defined value based on the

previous configuration step. For each iteration, we evolve the population by generating a new population from the

previous one. Function 8 describes the evolving process. Evolving the population requires randomly selecting two

parents and performs the crossover operation to generate a new child. Each one of the parents and the child represents a

composition path. Selecting each parent requires generating a new population that contains 𝑛 randomly selecting

composition paths (𝑛 is 5 in our proposed algorithm), and then finds the path that has the highest fitness value (i.e., the

path that has the lowest cost value). Function 10 describes the process of how the GA randomly creates a path. We

calculate the fitness value for each composition path by taking the absolute difference value between the existing path’s

cost and the viewer request’s cost. Function 9 describes how we calculate the fitness value.

After generating new parents, we perform the crossover process. This process requires selecting a random number

between 0 and the path size, then dividing each parent into two parts based on the selected random number. After that,

merges the first part of parent1 with the second part of parent2 to generate a new child composition path. Function 11

describes this crossover method and Fig. 6 depicts the crossover process. After generating a new child from his parents,

then we save this child in the current population and then repeat the whole process 𝑝𝑜𝑝𝑆𝑖𝑧𝑒 times. The crossover

process helps in creating a new path that might have a better fitness value than his parents.

Algorithm 2 shows our adaptation to the GA algorithm in which it iterate £ times to find a near-optimal path. As we

mentioned above and in each iteration, we evolve the current population until the termination condition is satisfied,

finally, we return the best video transcoding path as an output from the GA algorithm.

Fig. 6. Crossover process

Function 6. Parameters configuration: config(𝑝𝑜𝑝𝑆𝑖𝑧𝑒0 , £0)

Output: initial value for the population size, 𝑝𝑜𝑝𝑆𝑖𝑧𝑒 and
the number of iterations, £.

1. 𝑝𝑜𝑝𝑆𝑖𝑧𝑒 = 𝑝𝑜𝑝𝑆𝑖𝑧𝑒0;
2. £ = £0;

 Function 10. Get random composition path:
𝑔𝑒𝑡𝑅𝑎𝑛𝑑𝑜𝑚𝑃𝑎𝑡𝑕(𝑝𝑜𝑝)

Input: population, 𝑝𝑜𝑝.
Output: Random composition path.

1. create new population, 𝑛𝑒𝑤𝑃𝑜𝑝;
2. create an empty array of size 5;
3. fill this array with randomly 5 composition paths

selected from 𝑝𝑜𝑝;
1. return 𝑔𝑒𝑡𝐹𝑖𝑡𝑡𝑒𝑠𝑡(𝑛𝑒𝑤𝑃𝑜𝑝); /* see Function 9 */

Function 7. Initialize population: InitiaPop(𝑝𝑜𝑝𝑆𝑖𝑧𝑒)

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

 Vol. 3, Issue 5, May 2015

Copyright to IJIRCCE DOI: 10.15680/ijircce.2015.0305001 3742

Input: population size, 𝑝𝑜𝑝𝑆𝑖𝑧𝑒.
Output: instance of population.

1. Create new Population;
2. Create an empty array, 𝑝𝑎𝑡𝑕 of size popSize.
3. Fill this array with popSize random composition paths;

Function 11. Crossover operation: crossover(𝑝𝑎𝑟𝑒𝑛𝑡1 ,
𝑝𝑎𝑟𝑒𝑛𝑡2)

Input: random paths: 𝑝𝑎𝑟𝑒𝑛𝑡1 and 𝑝𝑎𝑟𝑒𝑛𝑡2 .
Output: A new path builds from these two input paths.

1. create an empty child path;
2. 𝑖𝑛𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 𝑟𝑎𝑛𝑑(0, 𝑝𝑎𝑟𝑒𝑛𝑡1 . 𝑠𝑖𝑧𝑒 − 1);
3. if (𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 < 𝑐𝑕𝑖𝑙𝑑. 𝑠𝑖𝑧𝑒)
4. for (𝑖 ← 0 𝑡𝑜 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) do
5. 𝑐𝑕𝑖𝑙𝑑. 𝑝𝑎𝑡𝑕 𝑖 = 𝑝𝑎𝑟𝑒𝑛𝑡1 . 𝑔𝑒𝑡𝑁𝑜𝑑𝑒 𝑖 ;
6. end for
7. for (𝑖 ← 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑡𝑜 𝑐𝑕𝑖𝑙𝑑. 𝑠𝑖𝑧𝑒) do
8. 𝑐𝑕𝑖𝑙𝑑. 𝑝𝑎𝑡𝑕[𝑖] = 𝑝𝑎𝑟𝑒𝑛𝑡2 . 𝑔𝑒𝑡𝑁𝑜𝑑𝑒(𝑖);
9. end for
10. end if
11. return 𝑐𝑕𝑖𝑙𝑑;

Function 8. Update population: 𝑒𝑣𝑜𝑙𝑣𝑒𝑃𝑜𝑝(𝑝𝑜𝑝)

Input: population, 𝑝𝑜𝑝.
Output: population, 𝑝𝑜𝑝.

1. for (i←1 to 𝑝𝑜𝑝. 𝑠𝑖𝑧𝑒) do
 /* See Function 10 */

2. 𝑝𝑎𝑟𝑒𝑛𝑡1 = 𝑔𝑒𝑡𝑅𝑎𝑛𝑑𝑜𝑚𝑃𝑎𝑡𝑕(𝑝𝑜𝑝);
 /* See Function 10 */

3. 𝑝𝑎𝑟𝑒𝑛𝑡2= 𝑔𝑒𝑡𝑅𝑎𝑛𝑑𝑜𝑚𝑃𝑎𝑡𝑕(𝑝𝑜𝑝);
 /* See Function 11 */

4. 𝑐𝑕𝑖𝑙𝑑 = crossover(𝑝𝑎𝑟𝑒𝑛𝑡1 , 𝑝𝑎𝑟𝑒𝑛𝑡2);
5. 𝑝𝑜𝑝. 𝑝𝑎𝑡𝑕 𝑖 = 𝑐𝑕𝑖𝑙𝑑;
6. end for
7. return 𝑝𝑜𝑝;

Function 9. Get the best composition path:
𝑔𝑒𝑡𝐹𝑖𝑡𝑡𝑒𝑠𝑡(𝑝𝑜𝑝, 𝑄. 𝑐𝑜𝑠𝑡)

Input: population, 𝑝𝑜𝑝.
Output: The best composition path.

1. 𝑏𝑒𝑠𝑡 = 𝑝𝑜𝑝. 𝑝𝑎𝑡𝑕𝑠[0];
2. double bcost =getCost(best); /* See Function 3 */
3. for (i←1 to 𝑝𝑜𝑝. 𝑠𝑖𝑧𝑒) do
4. if ((getCost 𝑝𝑜𝑝. 𝑝𝑎𝑡𝑕𝑠 𝑖 − 𝑄. 𝑐𝑜𝑠𝑡)| < |(𝑏cost −

𝑄. 𝑐𝑜𝑠𝑡)|)
5. 𝑏𝑒𝑠𝑡 = 𝑝𝑜𝑝. 𝑝𝑎𝑡𝑕𝑠 𝑖 ;
6. end if
7. end for
8. return 𝑏𝑒𝑠𝑡;

 Algorithm 2: Genetic Composition Algorithm:
𝐺𝐴(𝐺, 𝑄. 𝑐𝑜𝑠𝑡, 𝑄. 𝑓, 𝑣. 𝑓)

Input:
 Directed acyclic video transcoding graph, 𝐺(𝑇, 𝐿).
 User cost, 𝑄. 𝑐𝑜𝑠𝑡, and the requested format, 𝑄. 𝑓.
 Original Video format, 𝑣. 𝑓.

Output: Near optimal video transcoding composition path.

Part 1: Configuration:
1. config(𝑝𝑜𝑝𝑆𝑖𝑧𝑒0 , £0) ; /* see Function 6 */
Part 2: Initialization
2. Population 𝑝𝑜𝑝 = InitiaPop(𝑝𝑜𝑝𝑆𝑖𝑧𝑒)

 /* see Function 7 */
Part 3: Loop
3. for (i←1 to £) do
4. 𝑝𝑜𝑝 = evolvePop(𝑝𝑜𝑝); /* see Function 8 */
5. end for
6. return 𝑔𝑒𝑡𝐹𝑖𝑡𝑡𝑒𝑠𝑡(𝑝𝑜𝑝); /* see Function 9 */

VIII. EVALUATIONS AND DISCUSSION

In this section, we evaluate our adaptation to the SA/GA algorithms through experiments. In the first experiment we

focus on: a) the sensitivity analysis of the parameters of the SA algorithm, b) the sensitivity analysis of the parameters

of the GA, and c) analyzing the execution time for both of them. Then we provide a discussion and analysis that

compare these evaluation results.

In the second experiment, we focus on the quality of the results. In other words, how well the proposed algorithms

generate results. To measure their quality results, we calculate the success ratio of the SA algorithm and compare it

with the GA algorithm’s success ratio. Finally, we provide a discussion regarding the limitations and some possible

extensions of our work.

A. Configuration

For these experiments, we use Java JDK 1.8 via IDE Eclipse Kepler service release 2 to implement our adaptation to

the SA and GA algorithms and other utility classes. The evaluation is done using a desktop computer that has an Intel

Core i5 CPU 3.30 GHz; 8 GB RAM, and runs Windows 7 Professional.

B. Setup

To evaluate our adaptation to the SA/GA algorithms, we create the following groups of video transcoding functions;

these video transcoding functions cover some of the common video characteristics, Table 2 shows a number of them.

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

 Vol. 3, Issue 5, May 2015

Copyright to IJIRCCE DOI: 10.15680/ijircce.2015.0305001 3743

The descriptions of these groups are presented in Table 3. Each group represents a graph which contains set of nodes

and links as we described above. The nodes are the video transcoding functions and the links are the edges that connect

these nodes. Each group has a set of levels. Each level represents a transcoder (i.e., set of video transcoding functions

that convert from one codec to another). For example, group A has two levels (i.e., the first level converts from MPEG-

2 codec to H.264 codec and the second level converts from H.264 codec to MJPEG codec). Group A contains two

transcoders; each one has 36 video transcoding functions. Therefore, this group contains 72 video transcoding

functions. Each group (i.e., graph) also contains two other nodes, the source and the destination. The source node

represents the original video content and the destination node represents the transcoded video based on the viewer

requested format.

Table 2. A number of video transcoding functions

𝑡𝑖 From To Frame rate Bit rate
Frame size

delay
width height Aspect ratio

𝑡1 MPEG-2 H.264 25 1075 640 480 1.33 5

𝑡2 H.264 MJPEG 20 215 320 240 1.33 3

Table 3. Group description
Group ID Nodes in each level Number of levels Total number of nodes Total number of links

A 36 2 2+(36*2)= 74 36^2+2*36 = 1368
B 72 3 2+(72*3)= 218 72+(72*72) +(72*72) +72 = 10512
C 90 4 2+(90*4) = 362 90+(90*90) +(90*90) + (90*90) + 90 = 24480

C. Sensitivity analysis of the parameters

We perform the sensitivity analysis of the parameters of the proposed algorithms to determine the performance and

the quality of the results. In this experiment we focus on measuring how much the results are close to each other and

close to the viewer request. We evaluate the mean and the standard deviation of the solution, 𝑠, which represents a

positive value that is calculated by taking the absolute difference between the cost of the QoS-aware video transcoding

composition path that is returned from applying the SA/GA algorithms, 𝑠𝑘 . 𝑐𝑜𝑠𝑡, and the viewer request’s cost, 𝑄. 𝑐𝑜𝑠𝑡,
using (10). Also, we evaluate the average run time in millisecond for each algorithm based on 10 different viewer

requests, and run each request 10 times.

𝑠 = 𝑎𝑏𝑠(𝑠𝑘 . 𝑐𝑜𝑠𝑡 − 𝑄. 𝑐𝑜𝑠𝑡) (10)

Table 4 and Table 5 show the sensitivity analysis of the parameters (i.e., the temperature and the cooling rate) of the

SA algorithm. T and 𝛾 are the temperature and the cooling rate, respectively. avg s std s are the average of the mean

and the average of the standard deviation of the solution, 𝑠, avg(t) is the average execution time in millisecond that is

needed to find the composition path, 𝑠𝑘 for request 𝑖. We compute the values of the above as follows where 𝑛 = 10,

total number of runs for each viewer request and 𝑚 = 10, total number of viewer requests:

𝑎𝑣𝑔 𝑠 =
1

𝑚
 (

𝑚

𝑖=1

𝐴𝑉𝐺𝑖)
(11)

𝐴𝑉𝐺𝑖 =
1

𝑛
 (𝑠𝑘𝑖

. 𝑐𝑜𝑠𝑡 – 𝑄𝑖 . 𝑐𝑜𝑠𝑡)

𝑛

𝑘=1

) (12)

𝑠𝑡𝑑 𝑠 =
1

𝑚
 (

𝑚

𝑖=1

𝑆𝑇𝐷(𝑠𝑖)) (13)

𝑆𝑇𝐷 𝑠𝑖 =
1

𝑛
 (((𝑠𝑘𝑖

. 𝑐𝑜𝑠𝑡 − 𝑄𝑖 . 𝑐𝑜𝑠𝑡) − 𝑎𝑣𝑔 𝑠)2)
𝑛

𝑘=1
 (14)

𝑎𝑣𝑔 𝑡 =
1

𝑚
 (

𝑚

𝑖=1

1

𝑛
 (𝑠𝑘𝑖

. 𝑡)

𝑛

𝑘=1

)
(15)

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

 Vol. 3, Issue 5, May 2015

Copyright to IJIRCCE DOI: 10.15680/ijircce.2015.0305001 3744

where 𝑠𝑘𝑖 . 𝑡 is the execution time in millisecond needed to find the composition path 𝑘 for request 𝑖. For 𝑎𝑣𝑔(𝑠),

𝑠𝑡𝑑(𝑠) and 𝑎𝑣𝑔 𝑡 , the lower the value, the better it is.

We can notice from Table 4 that, for example, for group A, when T = 100000 and γ = 0.002, avg(s) and std(s) are

0, which means that the SA generates the same path and the cost of this path is the same as the viewer’s requested cost

during all the runs. Therefore, the SA successfully finds the optimal path that is the closest path to the viewer request

among all the discovered paths. So, we can conclude that, based on this case, the SA finds the optimal QoS-aware

video transcoding composition path. When T= 1000 and γ = 0.002, we got almost the same results with less execution

time. Notice that when the value of T increased and the value of γ decreased, we got better results in terms of 𝑎𝑣𝑔(𝑠)

and 𝑠𝑡𝑑(𝑠). The best solutions obtained are boldfaced.

For group B and C, bigger groups, the situation is almost the same, the results getting better when the value of T

increased and the value of 𝛾 decreased, which means that when the graph getting bigger, we need more time to get

better results. For example, for group B, the best values of 𝑎𝑣𝑔(𝑠) and 𝑠𝑡𝑑(𝑠) are when T =100000 and 𝛾 = 0.002,

which takes 1242.38 ms. While for group C, it takes 6782.49 ms when T = 100000 and 𝛾 = 0.001.

Table 4. The Sensitivity Analysis of the SA Algorithm’s parameters (i.e., Temperature, T, and Cooling rate, γ (10 runs)).
Group ID

𝛾
T=1000 T=5000 T=10000 T=20000 T=50000 T=100000

𝑎𝑣𝑔(𝑠) 𝑠𝑡𝑑(𝑠) 𝑎𝑣𝑔(𝑠) 𝑠𝑡𝑑(𝑠) 𝑎𝑣𝑔(𝑠) 𝑠𝑡𝑑(𝑠) 𝑎𝑣𝑔(𝑠) 𝑠𝑡𝑑(𝑠) 𝑎𝑣𝑔(𝑠) 𝑠𝑡𝑑(𝑠) 𝑎𝑣𝑔(𝑠) 𝑠𝑡𝑑(𝑠)

A

0.002 0.0000 0.0001 0.0012 0.0037 0.0013 0.0041 0.0013 0.0041 0.0002 0.0005 0.0000 0.0000

0.004 0.0056 0.0073 0.0005 0.0009 0.0027 0.0057 0.0027 0.0056 0.0002 0.0006 0.0015 0.0045

0.006 0.0051 0.0070 0.0048 0.0076 0.0031 0.0059 0.0052 0.0069 0.0020 0.0049 0.0038 0.0063

0.008 0.0062 0.0082 0.0092 0.0090 0.0023 0.0051 0.0030 0.0063 0.0067 0.0071 0.0042 0.0088

B

0.002 0.0315 0.0156 0.0274 0.0184 0.0289 0.0128 0.0236 0.0119 0.0233 0.0135 0.0195 0.0114

0.004 0.0450 0.0212 0.0376 0.0128 0.0356 0.0169 0.0326 0.0175 0.0406 0.0121 0.0364 0.0153

0.006 0.0534 0.0236 0.0428 0.0201 0.0444 0.0247 0.0427 0.0199 0.0447 0.0187 0.0375 0.0214

0.008 0.0458 0.0186 0.0528 0.0248 0.0408 0.0280 0.0479 0.0230 0.0359 0.0202 0.0473 0.0206

C

0.001 0.0669 0.0209 0.0672 0.0293 0.0752 0.0166 0.0738 0.0259 0.0673 0.0193 0.0610 0.0209

0.002 0.0945 0.0278 0.0848 0.0223 0.0828 0.0294 0.0863 0.0236 0.0778 0.0165 0.0676 0.0252

0.003 0.1054 0.0353 0.1052 0.0299 0.1017 0.0230 0.0775 0.0235 0.0815 0.0270 0.0849 0.0287

0.004 0.1083 0.0330 0.1102 0.0295 0.0878 0.0333 0.0986 0.0259 0.0912 0.0274 0.0856 0.0294

Table 5 shows the average execution time for SA algorithm. It is obvious that when the value of the T increased and

the value of 𝛾 decreased, the execution time will be increased. In addition, when the number of video transcoding

function nodes in the graph increased, the execution time will be increased as well. However, the average execution

time for SA is lower than the average execution time for GA as we will show next.

Table 5. The average execution time for the SA algorithm based on different temperature, T, and cooling rate, γ values (10 runs).
Group ID 𝛾 T = 1000 T = 5000 T = 10000 T = 20000 T = 50000 T = 100000

𝑎𝑣𝑔(𝑡) (𝑚𝑠) 𝑎𝑣𝑔(𝑡) (𝑚𝑠) 𝑎𝑣𝑔(𝑡) (𝑚𝑠) 𝑎𝑣𝑔(𝑡) (𝑚𝑠) 𝑎𝑣𝑔(𝑡) (𝑚𝑠) 𝑎𝑣𝑔(𝑡) (𝑚𝑠)

A

0.002 102.95 133 146.86 159.96 178.02 190.56

0.004 43.24 55.62 61.16 66.66 74.03 79.59

0.006 26.7 34.16 37.57 40.99 45.57 48.82

0.008 18.62 24.02 26.49 28.95 32.53 34.93

B

0.002 676.86 857.01 942.67 1031.15 1151.52 1242.38

0.004 310.41 387.83 424.06 460.65 510.16 549.98
0.006 199.31 250.16 272.68 294.03 325.03 348.52

0.008 147.98 184.34 199.2 215.31 237.28 252.73

C

0.001 3884 4856.82 5289.36 5796.66 6333.57 6782.49

0.002 1788.12 2221.84 2434.45 2637.85 2872.17 3065.89

0.003 1168.39 1449.13 1565.71 1690.82 1844.48 1967.4

0.004 862.71 1067.3 1159.96 1241.7 1358.8 1458.37

Table 6 shows the sensitivity analysis of the GA’s parameters (i.e., population size and number of iterations). P and

£ are the population size and the number of iterations, respectively. 𝑎𝑣𝑔 𝑠 , 𝑠𝑡𝑑 𝑠 , and 𝑎𝑣𝑔(𝑡) mean the same as

above and we used (10) to (15) to calculate their values. As we mentioned above, For 𝑎𝑣𝑔(𝑠), 𝑠𝑡𝑑(𝑠) and 𝑎𝑣𝑔 𝑡 , the

lower the value, the better it is. The best solutions obtained are boldfaced.

We can notice from Table 6 that, for example, for group A and B, we get the best values of 𝑎𝑣𝑔 𝑠 and 𝑠𝑡𝑑 𝑠 when

P = 250 and £ = 30, while for group C, we get the best values of 𝑎𝑣𝑔 𝑠 and 𝑠𝑡𝑑 𝑠 when P = 250 and £ = 100. Also,

we can notice that GA finds better results than SA in terms of 𝑎𝑣𝑔 𝑠 and 𝑠𝑡𝑑 𝑠 . However, GA takes very long time

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

 Vol. 3, Issue 5, May 2015

Copyright to IJIRCCE DOI: 10.15680/ijircce.2015.0305001 3745

than SA. For example, for groups B, GA takes 3816.38 ms to find the best result while for group C, it takes 32894.68

ms. In general, increasing the value of P and £ does not mean always getting much better results.

Table 6. The sensitivity analysis of the GA’s parameters, i.e., population size, P and number of iterations £ (10 runs)

Group
ID

£
P = 50 P = 100 P = 150 P = 200 P = 250

𝑎𝑣𝑔(𝑠) 𝑠𝑡𝑑(𝑠)
𝑎𝑣𝑔(𝑡)

(ms)
𝑎𝑣𝑔(𝑠) 𝑠𝑡𝑑(𝑠)

𝑎𝑣𝑔(𝑡)
(ms)

𝑎𝑣𝑔(𝑠) 𝑠𝑡𝑑(𝑠)
𝑎𝑣𝑔(𝑡)

(ms)
𝑎𝑣𝑔(𝑠) 𝑠𝑡𝑑(𝑠)

𝑎𝑣𝑔(𝑡)
(ms)

𝑎𝑣𝑔(𝑠) 𝑠𝑡𝑑(𝑠)
𝑎𝑣𝑔(𝑡)

(ms)

A

5 0.0618 0.0799 13.77 0.1062 0.1090 26.52 0.1345 0.1092 39.34 0.1511 0.1218 52.56 0.1594 0.1069 66.19

10 0.0204 0.0206 26.37 0.0119 0.0263 53.22 0.0087 0.0214 80.26 0.0099 0.0240 106.49 0.0163 0.0409 133.04

15 0.0095 0.0171 39.26 0.0102 0.0228 78.38 0.0040 0.0099 121.48 0.0031 0.0083 161.13 0.0018 0.0045 200.1

20 0.0165 0.0144 53.58 0.0018 0.0023 106.41 0.0011 0.0015 159.13 0.0010 0.0013 208.98 0.0033 0.0094 267.17

30 0.0160 0.0191 80.37 0.0030 0.0057 160.63 0.0032 0.0062 239.18 0.0005 0.0006 321.25 0.0004 0.0004 397.1

50 0.0193 0.0208 132.83 0.0068 0.0093 264.48 0.0020 0.0049 391.38 0.0015 0.0040 531.16 0.0004 0.0005 659.87

100 0.0169 0.0167 267.55 0.0036 0.0062 532.82 0.0015 0.0016 796.22 0.0009 0.0013 1068.09 0.0017 0.0047 1335.07

200 0.0126 0.0137 530.3 0.0047 0.0079 1050.54 0.0024 0.0051 1568.82 0.0018 0.0047 2121.29 0.0005 0.0005 2583.5

B

5 0.1866 0.1287 128.56 0.1837 0.1574 253.64 0.2050 0.1557 378.52 0.2395 0.1534 508.16 0.1500 0.1111 634.27

10 0.0469 0.0477 258.44 0.0488 0.0687 509 0.0710 0.0784 758.89 0.0694 0.0894 1018.14 0.0790 0.1088 1285.11

15 0.0300 0.0189 390.01 0.0150 0.0252 766.93 0.0144 0.0314 1145.73 0.0087 0.0190 1540.87 0.0297 0.0549 1910.53

20 0.0332 0.0294 519.08 0.0135 0.0151 1018.07 0.0074 0.0121 1522.57 0.0057 0.0073 2034.79 0.0024 0.0045 2545.46

30 0.0339 0.0240 775.19 0.0213 0.0240 1548.02 0.0078 0.0085 2270.72 0.0025 0.0029 3032.83 0.0016 0.0018 3816.38

50 0.0465 0.0249 1285.08 0.0118 0.0127 2589.24 0.0056 0.0075 3827.55 0.0039 0.0060 5052.19 0.0023 0.0028 6332.7

100 0.0281 0.0201 2555.32 0.0133 0.0126 5102.3 0.0063 0.0085 7697.33 0.0034 0.0047 10165.14 0.0032 0.0061 12639.56

200 0.0220 0.0190 5146.5 0.0082 0.0096 10223.39 0.0048 0.0044 15417.62 0.0021 0.0028 20141.77 0.0019 0.0024 24990.13

C

5 0.2407 0.1312 331.89 0.2501 0.1349 660.65 0.2414 0.1453 987.42 0.2551 0.1616 1311.83 0.2556 0.1392 1650.16

10 0.0873 0.0727 662.08 0.0864 0.0954 1314.33 0.0976 0.0922 1978.2 0.0996 0.0977 2629.76 0.0969 0.0822 3277.93

15 0.0565 0.0362 989.3 0.0250 0.0335 1974.62 0.0355 0.0453 2959.37 0.0397 0.0667 3928.45 0.0354 0.0549 4924.83

20 0.0512 0.0285 1320.05 0.0329 0.0213 2620.28 0.0168 0.0188 3950.66 0.0122 0.0149 5256.53 0.0124 0.0268 6544.6

30 0.0582 0.0290 1960.09 0.0203 0.0159 3932.84 0.0142 0.0091 5924.82 0.0084 0.0079 7894.75 0.0078 0.0089 9855.14

50 0.0451 0.0237 3288.79 0.0166 0.0119 6567.57 0.0170 0.0191 9917.35 0.0056 0.0068 13153.09 0.0065 0.0070 16343.35

100 0.0564 0.0312 6565.13 0.0193 0.0133 13147.43 0.0138 0.0105 19635.23 0.0069 0.0080 26282.76 0.0052 0.0048 32894.68

200 0.0552 0.0383 13083.79 0.0310 0.0241 26241.13 0.0106 0.0096 39249.11 0.0067 0.0065 52938.24 0.0058 0.0093 65453.51

Also, we can notice that the GA needs more time to find the near optimal solutions for group B and C, while the SA
finds good enough solutions for group B and C within less period of time. For this reason, we performed another
experiment for the SA algorithm in which we give the SA much more opportunity to be able to find better results.
Table 7 describes this experiment. This done by increasing the value of T and decreasing the value of γ. Table 7 shows
that the SA generates the best result for group B when the value of T = 1E+20 and γ = 0.001. The best solutions
obtained are boldfaced. However, it takes 26134.04 ms which is much higher than the time that the GA takes to find
even a better result. For group C, the SA generate the best result when the value of T = 1E+20 and 𝛾 = 0.001. However,
it takes 46777.47 ms which is much higher than the time that the GA takes to find even a better result.

Table 7. Second experiment for the SA algorithm

Group ID T 𝛾 𝑎𝑣𝑔(𝑠) 𝑠𝑡𝑑(𝑠) 𝑎𝑣𝑔(𝑡)

B

1E+20 0.001 0.0062 0.0069 26134.04

1E+20 0.002 0.0153 0.0089 8222.44

1E+20 0.003 0.0133 0.0081 4462.95

1E+20 0.004 0.0180 0.0096 2996.54

C

1E+20 0.001 0.0433 0.0158 46777.47

1E+20 0.002 0.0484 0.0117 16526.82

1E+20 0.003 0.0552 0.0188 9732.45

1E+20 0.004 0.0693 0.0153 6840

Based on the results that are shown in Tables 4, 5, 6, and 7, we can conclude that:

 SA can find the optimal results for small groups or graphs and it can find good enough results for medium
or bigger groups or graphs within a small duration of time.

 GA can find near-optimal results for medium or bigger groups. However, it takes very long time.

D. Success ratio

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

 Vol. 3, Issue 5, May 2015

Copyright to IJIRCCE DOI: 10.15680/ijircce.2015.0305001 3746

In this experiment, we focus on evaluating the proposed approaches in terms of success ratio. Then, we compare the

success ration of the SA algorithm with the success ratio of the GA algorithm. Formally we can define the success ratio

as follows:

𝑆𝑟 =
𝛼

𝛽
 (16)

where Sr represents the success ratio, α represents the total number of QoS criteria that are satisfied, and β represents

the total number of the QoS criteria that we measure (i.e., the total number of QoS criteria is 6). We provide a range of

user satisfactions: 100%, 90%, and 80%. The 100% means that the end-user requests a 100% satisfaction on all the

QoS criteria, which means that the end-user requests a video transcoding functions that are 100% compatible with his

QoS requirements. For example, if the user wants a 25 fps as a frame rate and he requests a 100% satisfaction rate, we

count this QoS as a satisfied QoS criterion if and only if the algorithm generates a path that has the last video

transcoding function in this path generates exactly 25 fps as a frame rate. Similarly, the 90% satisfaction rate means we

count this QoS criterion as a satisfied QoS criterion if and only if the algorithm generates a path that has the last video

transcoding function in this path generates a frame rate between 22.5 and 27.5, which means if the viewer request a

90% satisfaction rate, he can accept any frame rate between the above range (i.e., 225 and 27.5).

Table 8 and Table 9 show the success ratio for SA algorithm and the GA algorithm, respectively. We calculate the

𝑎𝑣𝑔(𝑎𝑙𝑙) by calculating the average of the success ratio after running 10 different viewer requests, and execute each

request 10 times. Formally, we calculate 𝑎𝑣𝑔(𝑎𝑙𝑙) as follows:

𝑎𝑣𝑔 𝑎𝑙𝑙 =
1

𝑖
∗ ((

1

𝑗
∗ (𝑉𝑅𝑖 . 𝑅𝑗 . 𝑆𝑟

10

𝑗=1

)

10

𝑖=1

) (17)

where 𝑉𝑅𝑖 is the viewer request 𝑖, 𝑅𝑗 is the 𝑗 run, and 𝑆𝑟 is the success ratio for request 𝑖 in run 𝑗.

These results that are shown in Table 8 and Table 9, proof that the SA algorithm is better than the GA for small

groups or graphs while the results of both the SA and GA are close to each other for medium and large groups.

Table 8. Success ratio for the SA

Group ID Satisfaction rate 𝑎𝑣𝑔(𝐴𝑙𝑙)

A

100% 0.82

90% 0.85

80% 0.88

B

100% 0.34

90% 0.46

80% 0.59

C

100% 0.29

90% 0.42

80% 0.56

 Table 9. Success ratio for the GA

Group ID Satisfaction rate 𝑎𝑣𝑔(𝐴𝑙𝑙)

A

100% 0.56

90% 0.61

80% 0.69

B

100% 0.33

90% 0.45

80% 0.57

C

100% 0.34

90% 0.47

80% 0.60

IX. LIMITATIONS AND FUTURE DIRECTION

Real-time video transcoding for on-demand videos requires transcoding the video content on-the-fly and in real-

time. Satisfying the requested QoS level during the transcoding process requires selecting and/or composing several

video transcoding functions together in a chained fashion. Efficient selection/composition processes requires more

efficient approaches. The proposed approaches still have some limitations, such as low performance and quality results.

However, this is just the beginning to propose robust video transcoding service composition approaches in cloud

computing. In addition to the current application specific QoS, future work may focus on adding the network QoS to

the composition process. Also, we are planning to enhance the performance of these proposed algorithms by further

implementation improvement. More possible future directions would be to build a complete cloud-based video delivery

system, which includes both video transcoding and streaming subsystems, based on the viewer requirements and

preferences.

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

 Vol. 3, Issue 5, May 2015

Copyright to IJIRCCE DOI: 10.15680/ijircce.2015.0305001 3747

X. CONCLUSION

Delivering real-time video content over any type of network is becoming a necessary requirement. During the

delivery process, the original multimedia content might be transcoding to meet the different viewer’s requirements and

preferences. Guarantee QoS during the transcoding process requires selecting and composing the best video

transcoding functions from a pool of transcoding functions. So, in this paper, we propose a video transcoding service

selection and composition approach, which introduce two candidate algorithms based on the simulated annealing and

the genetic algorithm, to satisfy the required QoS level and meet the viewer’s requirements. We have implemented a

prototype of the proposed algorithms and conducted experiments using small-, medium-, and large-scale graphs of

video transcoders and sample viewer requests to measure the performance and the quality of the results. The

experimental results show that the SA outperforms the GA in terms of performance and success ratio for small-scale

graph, while GA outperforms the SA algorithm in terms of performance for medium- or large- scale graph. The success

ratio for the SA and GA algorithms are close to each other for medium- or large-scale graph.

REFERENCES

1. C. D. Evans, "The Internet of Things: How the Next Evolution of the Internet Is Changing Everything," April 2011. [Online].

Available: http://www.cisco.com/web/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf. [Accessed 19 March 2015].

2. Apple, [Online]. Available: https://www.apple.com/iphone-6/. [Accessed 15 March 2015].

3. Cisco, "Cisco Visual Networking Index: Forecast and Methodology, 2013–2018," 10 June 2014. [Online]. Available:

http://www.cisco.com. [Accessed 11 January 2015].

4. Wikipedia, "Transcoding," 6 January 2015. [Online]. Available: http://en.wikipedia.org/wiki/Transcoding. [Accessed 11 January
2015].

5. Wikipedia, "Video Codec," 1 July 2014. [Online]. Available: http://en.wikipedia.org/wiki/Video_codec. [Accessed 11 January 2015].

6. J. Cabasso, "Determining Video Quality," November 2008. [Online]. Available:
http://www.aventuracctv.com/PDF/ATI_Video_Quality.pdf. [Accessed 24 January 2015].

7. Samsung, [Online]. Available: http://www.samsung.com/us/. [Accessed 21 March 2015].

8. Apple. [Online]. Available: https://www.apple.com. [Accessed 11 January 2015].

9. Amazon, "Amazon Elastic Transcoder," [Online]. Available: http://aws.amazon.com/elastictranscoder/. [Accessed 11 January 2015].

10. "Akamai," [Online]. Available: http://www.akamai.com/. [Accessed 24 January 2015].

11. W. Zhu, C. Luo, J. Wang and S. Li, "Multimedia Cloud Computing," Signal Processing Magazine, IEEE, Vol. 28, No. 3, pp. 59-69,
2011.

12. M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica and M. Zaharia, "A

View of Cloud Computing," Communications of the ACM, Vol. 53, No. 4, pp. 50-58, April 2010.

13. F. Jokhio, A. Ashraf, S. Lafond, I. Porres and J. Lilius, "Cost-Efficient Dynamically Scalable Video Transcoding in Cloud

Computing," TUCS Technical Report, Finland, 2013.

14. Wikipedia, "List of video transcoding software," 31 July 2014. [Online]. Available:
http://en.wikipedia.org/wiki/List_of_video_transcoding_software. [Accessed 15 March 2015].

15. D. G. Joseph and M. Moghaddam, "Service Selection in Web Service Composition: A Comparative Review of Existing Approaches,"

in Web Services Foundations, Springer New York, 2014, pp. 321-346.

16. "Wikipedia," 15 Fabruary 2015. [Online]. Available: http://en.wikipedia.org/wiki/Simulated_annealing. [Accessed 15 March 2015].

17. Wikipedia, "Genetic Algorithm," 6 April 2015. [Online]. Available: http://en.wikipedia.org/wiki/Genetic_algorithm. [Accessed 14

April 2015].

18. W. Li, Y. Wang, C. Li, S. Lu and D. Chen, "A QoS-aware service selection algorithm for multimedia service overlay networks," in

Parallel and Distributed Systems, 2007 International Conference on, Hsinchu, pp. 1-8, 2007.

19. A. Jula, E. Sundararajan and Z. Othman, "Cloud computing service composition: A systematic literature review," Expert Systems with
Applications, Vol. 41, No. 8, pp. 3809–3824, 15 June 2014.

20. M. S. Hossain and A. E. Saddik, "QoS Requirement in the Multimedia Transcoding Service Selection Process," IEEE

TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, Vol. 59, No. 6, pp. 1498-1506, 2010.

21. Y. Gao, J. Na, B. Zhang, L. Yang and Q. Gong, "Optimal Web Services Selection Using Dynamic Programming," in Proceedings of

the 11th IEEE Symposium on Computers and Communications (ISCC'06), pp. 365-370, 2006.

22. R. Maya and S. Ugrasen, "Web Service Selection Algorithm for Dynamic Service Composition using LSLO Approach," in IEEE,
Dhaka, Bangladesh, pp. 1-6, 2013.

23. T. Zhang, "QoS-aware Web Service Selection based on Particle Swarm Optimization," Journal of Networks, Vol. 9, No. 3, pp. 565-

570, 2014.

24. X. Gu and K. Nahrstedt, "Distributed multimedia service composition with statistical QoS assurance," IEEE TRANSACTIONS ON

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

 Vol. 3, Issue 5, May 2015

Copyright to IJIRCCE DOI: 10.15680/ijircce.2015.0305001 3748

MULTIMEDIA, Vol. 8, No. 1, pp. 141-151, 2006.

25. J.-C. Moissinac, "Automatic Discovery and Composition of Multimedia Adaptation Services," in The Fourth International

Conferences on Advances in Multimedia, Chamonix, France, April 29, pp. 155-160, 2012.

26. M. S. Hossain, "QoS-aware service composition for distributed video surveillance," Multimedia Tools and Applications, Vol. 73, No.

1, pp. 169-188, 2014.

27. A. J. Gonzalez, J. Alcober, R. M. d. Pozuelo, F. Pinyol and K. Z. Ghafoor, "Context-aware multimedia service composition using
quality assessment," in 2011 IEEE International Conference on Multimedia and Expo (ICME), Barcelona, Spain, pp. 1-6, 11-15 July

2011.

28. V. G. a. L. Sakalauskas, "Simulated Annealing and Variable Neighborhood Search Algorithm for Automated Software Services
Composition," in 35th International Convention on Information and Communication Technology, Electronics and Microelectronics ,

Opatija, Croatia, pp. 395-399, May 21-25,2012.

29. Z. Ye, X. Zhou and A. Bouguettaya, "Genetic Algorithm Based QoS-Aware Service Compositions in Cloud Computing," Database
Systems for Advanced Applications, lecture Notes in Computer Science, Vol. 6588, pp 321-334, April, 2011.

30. B. S. a. P. Kumar, "A Survey of Simulated Annealing as a Tool for Single and Multiobjective Optimization," The Journal of the

Operational Research Society, Vol. 57, No. 10, pp. 1143-1160, 2006.

31. Z.-p. GAO, J. CHEN, X.-s. QIU and L.-m. MENG, "QoE/QoS driven Simulated Annealing-based Genetic Algorithm for Web Service

Selection," The Journal of China Universities of Posts and Telecommunications, Vol. 16, No. 1, pp. 102–107, September 2009.

32. L. Arockiam and N. Sasikaladevi, "Simulated Annealing Versus Genetic Based Service Selection Algorithms," International Journal
of U- & E-Service, Science & Technology, Vol. 5, issue 1, p35, 2012.

33. L. Arockiam and N. Sasikaladevi, "Simulated Annealing Based Service Selection Algorithm for Composite Web Service,"

International Journal of Advanced Research in Computer Science, Vol. 3, No. 2, p.132, March 2012.

34. " Euclidean Distance," Wikipedia, 17 November 2014. [Online]. Available:

http://en.wikipedia.org/wiki/Euclidean_distance#Squared_Euclidean_distance. [Accessed 6 11 2014].

35. Jinshan Liu, Val´erie Issarny, "QoS-aware Service Location in Mobile Ad-Hoc Networks," in 5th International Conference on Mobile

Data Managment MDM, Berkeley, CA, United States. pp. 224-235, 2004.

36. Y. Xu, R. Qu and R. Li, "A simulated annealing based genetic local search algorithm for multi-objective multicast routing problems,"

Annals of Operations Research, Vol. 206, No. 1, pp. 527-555, July 2013.

37. Wikipedia, "Video Quality," 9 March 2015. [Online]. Available: http://en.wikipedia.org/wiki/Video_quality. [Accessed 21 March

2015].

38. Wikipedia, "Video Quality," 14 July 2014. [Online]. Available: http://en.wikipedia.org/wiki/Video_quality. [Accessed 12 January
2015].

39. W. D. J. C. Lianyong Qi, "Weighted principal component analysis-based service selection method for multimedia services in cloud,"

Springer Computing - Springer-Verlag Wien, 2014.

BIOGRAPHY

Nawaf Alsrehin is a PhD student-Graduate Teaching Assistant in the Computer Science department,
School of Engineering, Utah State University, USA. He received a Bachelor degree of Computer
Science (CS) and a Master degree of Computer Information System (CIS) in 2003 and 2006 from
Yarmouk University, Jordan. His research interests are multimedia services, video transcoding, and
cloud-based multimedia services.

http://link.springer.com/bookseries/558

