
 ISSN (Online) : 2319 - 8753
 ISSN (Print) : 2347 - 6710

 International Journal of Innovative Research in Science, Engineering and Technology

 Volume 3, Special Issue 3, March 2014

 2014 International Conference on Innovations in Engineering and Technology (ICIET’14)

 On 21st & 22nd March Organized by

 K.L.N. College of Engineering, Madurai, Tamil Nadu, India

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 1507

Radix 2
5
 FFT Architecture Implementation in

Xilinx FPGA
#1

S.Selvakumar,
#2

L.Stephy jasmine rani,
#3

G.Vijayalakshmi,
#4

N.Vishnudevi,
#5

N.Janakiraman

Department of Electronics and Communication Engineering, K.L.N College of Engineering ,Tamlinadu,India

ABSTRACT- FFT is a highly efficient procedure to

reduce computation time and also improves the

performance. The Radix 22, 23 and 24 FFT architectures

are not efficient because of its low utilization of

components. Our proposed design will provide high data

throughput and low complexity VLSI structure for Radix

25 FFT architecture. Most of previous architectures were

designed using the complex booth multipliers, but our

proposed architecture uses canonical signed digit (CSD)

multiplier circuit. This entire proposed architecture

simulated in Xilinx 12.2 system edition software and

implemented in Xilinx Virtex-5 XUP FPGA kit. To

optimize the power, area and speed of the signal process,

pipelining and parallel processing techniques have to be

used in this proposal. In future this Radix 25 FFT

architecture will be incorporated in MIMO-OFDMA

based software defined radio (SDR) architecture.

KEY WORDS :Fast fourier transform, pipelining,

discrete fourier transform, radix

I.INTRODUCTION:

 Today‟s technology based on hardware and

power efficiency for high performance. Application

such as digital signal processing , communications

etc are based on digital function which requires

complex functionalities .For this fast fourier

transform is one of the efficient method to

implement discrete fourier transform due to its

reduced computations. Our proposed design

“RADIX 2
5
’’ will provide high data throughput and

low complexity VLSI structure .Power , area and

speed of the signal processing can be optimized

using pipelining techniques.

II.FAST FOURIER TRANSFORM:

 The Fourier Transform decomposes a

wave form basically any real world wave form into

sinusoids. It is possible to generalize the Fourier

transform on discrete structures such as Finite

Groups. The Efficient Computation Of such

structures, by fast Fourier transform, is essential for

high speed computing. FFT algorithms are

commonly employed to compute DFTs, but there is

a clear distinction is that “DFT” refers to a

Mathematical transformation, regardless of how it

is computed, whereas “FFT” refers to a specific

families of a algorithms for computing DFTs. Fast

Fourier Transform (FFT) is developed by Cooley

and Tukey in 1965.

 Highly efficient procedure for computing

the DFT of a finite series and requires less number

of computations than that of direct evaluation of

DFT. Fast Fourier transform (FFT) is based on

decomposition and breaking the sequence into

smaller sequences and combining them to get total

sequence. The FFT time domain decomposition is

usually carried out by a bit reversal sorting

algorithm .There are various pipeline structures

using radix-2, radix-4 and split radix algorithm. In

1998, HE and TORKESON suggested radix 2
2
 and

2
3
 FFT algorithm .These algorithms are

characterized by the trait that reduces the number

of non –trivial multiplications in the radix-2

algorithm architectures .It has same number of non

–trivial multiplications at the same positions in the

single flow graph as the same butter fly structure as

that of the radix-4 algorithm but has the same

butterfly structure as that of the radix-2

algorithm.Radix-2 algorithm is characterized

according to the merit that it has some

multiplicative complexity as the radix-4 algorithm

Radix 2
5
 Fft Architecture Implementation In Xilinx Fpga

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 1508

but still retains simple structures of the radix-2 butterfly[1].

III.RADIX-2:

 The Radix indicates the size of FFT

decomposition. In this paper Radix is 2 which is

single-Radix FFT. For single Radix FFTs,

transform size must be choose according to the

power of Radix. Here we use 32and64 sizes, which

is 2
5
 and 2

6
.The Radix-2 Decimation-in-Time FFT

(DIT-FFT) is applied to the two Points N/2 DFT‟s.

To find the number of butterfly stages required to

compute N length, sequence can be M=log2N, and

N/2 butterfly operations are computed in each

stage. In this paper there are 5 butterfly stages and

16 butterfly operations are computed to produce 32

Point FFT [2].

In DIT-FFT the given input sequence is in shuffled

order and the output sequence is in natural order.

By using Bit-Reversal input sequence gets shuffled.

The Radix-2 decimation in time FFT is the basic

form of Cooley-Tukey implementation algorithms

[1]. Radix-2 first computes the DFT of the even

index inputs and the odd index inputs and then

combines the two results to produce the entire DFT

sequence. The basic computation block in the FFT

is butterfly in which the two inputs are combined to

give two outputs The FFT operation of butterfly

diagram is shown in the below figure, and the

powers of the twiddle factors associated in

butterflies are in natural order.

The twiddle factor exponent k of each stage is

calculated by using below equation;

 K = N t/2m where t=0, 1, 2 ,...... 2m-1

IV.RADIX 22 ALGORITHM :

 Radix 2

2
algorithm derivation was derived by

considering the first 2 steps of Cascade

Decomposition in the radix 2 DIF – FFT together

.when a 3 – Dimensional index map[3] was applied

,

 n=N/2 n1+N/4 n2+ n3{n1,n2=0,1 n3=0~N/4-1}

 n=k1+2k2+4k3 {k1, k2=0,1 k3=0~N/4-1} (1)

Decomposing the composite Twiddle Factor ,it can

be rewritten as

WN
(N/4 n2+n3)(k1+2k2+4k3)(N/4 n2+n3)(k1+2k2+4k3)

 =(-j)
n
2

(k
1

=2k
2

)
WN

n
3

(k
1

+2k
2

)
WN/4

n
3

k
3 (2)

After Substitution in (2)

X
(k

1
+2k

2
+4k

3
)
=

 (3)

Then, full Multiplications are used to apply the

decomposed Twiddle Factor WN
n3(k1+2k2)

in

(3).After this Cascade decomposition recursively to

the remaining DFT‟s of length N/4 in (4) the

complete Radix-2
2
 FFT algorithm was obtained.

 Radix-2
2

 algorithm was obtained based on

the merit that it contains same Multiplicative

Complexity.

V.RADIX 23
 ALGORITHM :

 Radix 2

3
 Algorithm was derived by

considering the first 3 steps of Cascade

decomposition .The linear index mapping

converted into 4-dimensional linear maps[3].

n=(N/2n1+N/4n2+N/8n3+n4)N

k=(k1+2k2+4k3+8k4)N (4)

As previously explained, with cascade

decomposition Twiddle Factor can be defined as

WN
(N/2n

1
+N/4n

2
+N/8n

3
+n

4
)(k

1
+2k

2
+4k

3
+8k

4
)

=(-1)
n
1
k
1 (-j)

n
2

(k
1
+2k

2
)

W8
n
3

(k
1

+2k
2

+4k
3
)

WN
n
4
(k

1
+2k

2
+8k

3
)

WN/8
n
4
k
4

 (5)

After substitution of eqn (5),

X(k1+2k2+4k3+8k4)=

4k

4 (6)

Hence a Booth Multiplier called a Programmable

Multiplier is used instead of a Constant Multiplier.

VI.RADIX 24 ALGORITHM :

 Radix 2
4
 algorithm was derived by taking 1

st

cascade decomposition. The linear index mapping

transformed in the form of 5-dimensional linear

index map [3].

n=(N/2n1+N/4n2+N/8n3+N/16n4+n5)N

k=(k1+2k2+4k3+8k4+16k5)N (7)

With cascade decomposition Twiddle Factor can be

expressed in the form,

WN
(N/2n

1
+N/4n

2
+N/8n

3
+N/16n

4
+n

5
)(k

1
+2k

2
+4k

3
+8k

4
+16k

5
)

={(-

1)
n1k1

(-j)
n2(k1+2k2)

 W8
n3(k1+2k2+4k3)

 W16
n4(k1+2k2+4k3+8k4)

}

WN
n5(k1+2k2+4k3+8k4)

 WN/16
n4k4

 (8)

After substitution of eqn (8)

X(k1+2k2+4k3+8k4+16k5)=

WN

n5(k1+2k2+4k3+8k4)
] WN/16

n5k5
(8)

Radix 2
5
 Fft Architecture Implementation In Xilinx Fpga

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 1509

Hence the Complex Multiplication for the Twiddle

Factors, W16
i(k

1
+2k

2
)
,can be reduced to a Constant

Multiplier with some control logics.

VII.RADIX 25ALGORITHM:

 This paper Proposes and concentrate on

the design of 32 point FFT and its performance

analysis. By using VHDL as a design entity the

synthesis and stimulation is done on Xilinx ISE

Design Suite12.2.A DFT Decomposes a sequence

of values into components of different frequencies.

This operation is useful in many fields but

computing it directly from the definition is often

too slow to be practical. An FFT is a way to

compute the same result more quickly: Computing

a DFT of N points, takes O(N
2
)Arithmetical

operations, while an FFT can compute the same

DFT in only O(N log N) operations. FFTs can

decomposed using DFTs of even and odd points

,which is called a decimation in-time (DIT) FFT, or

they can decomposed using another approach

which is called a Decimation-infrequency(DIF)

FFT.

 Computation of the end point DFT

corresponds of computation of N samples of

Fourier transform at N equally spaced frequencies.

Consider the input x(n) of length N is a complex

data sequence, its DFT X(k) is also complex data

sequence of length N which is defined as map[3]

X(K)= WN
nK

, K=0, 1,...........N-1.

 Where WN denotes, exp{-j2π/N}, the

Nth primitive root of unity with its exponent

being evaluated modulo N the „n‟ is the time

index and the „K‟ is the frequency index.

Twiddle Factor coefficients are used to

combine the results from the previous stage to

form inputs to the next stage.

Twiddle Factor Computation based on Radix 25 algorithm[1]

 1 2 3 4 5 6 7 8

Radi

x 22

-

j

W51

2

-j W12

8

-j W3

2

-j W8

Radi

x 23

-

j

W8 -j W51

2

-j W6

4

-j W8

Radi

x 24

-

j

W16 -j W51

2

-j W1

6

-j W3

2

Radi

x 25

-

j

W8 W3

2

-j W51

2

-j W1

6

-j

VIII.CANONIC SIGNED DIGIT MULTIPLIER

 In this paper we are using canonic Signed

Digit (CSD) Multiplier instead of Fixed Width

Multiplier used in previous architecture. In Fixed

Width Multiplier, in the resulting product a

significant error will be introduced and it is

undesirable for many DSP applications. To reduce

the error of the Fixed Width Multiplier, a constant

bias is added to the retained cells. However its,

product is still large [10]. To overcome this, CSD is

used in this architecture. CSD Multiplier is used for

encoding the floating point numbers in two‟s

complement representation [4].

The CSD Multiplier has the function to multiply

successive input data values by one or more

predetermined constant values, when the input data

values are in binary format and finally result will

make rounded to p-number of bits.

The constant value is in CSD format. Input

data values are in the form d0,d1,d2,.....dM-1for

each di for i=0,1,2.....M-1 takes one of the

values 0 & +1 and which the constant values are

in the form b0,b1,b2.......bN-1 for each bi for

i=0,1,2,.....N-1 takes one of the values 0,+1,-1

and where no consecutive bi are non-zero. The

CSD Multiplier result was obtained addition and

shift operations[8].
In normal way the multiplication operation

involves two major steps, Partial product generation

and Accumulation. The speed of multiplication can

be improved by reducing number of partial product.

Number of partial products depends on the number

of non-zero digits. Number of non-zero digits is

proportional to number of partial products.

Radix 2
5
 Fft Architecture Implementation In Xilinx Fpga

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 1510

BLOCK DIAGRAM:

 Fig 1:Block of 32 point radix-2 algorithm

The method of CSD is used for multiply

the floating point. The representation of floating

point contains a sign, mantissa and exponent. The

floating point multiplication involves three

steps:[11]

 First, Multiplication process involves in two

mantissa numbers: Floating point stores in

signed form but multiplier need with

unsigned form. Mantissa have p-number of

bits, the product will be 2p number of bits

and finally result will make rounded to p-

number of bits.

 Second, to compute the exponent: the

exponent is represented as bias. It differs

from various number (i.e) for single the bias

is 127 and for double precision the bias is

1023.

 Third, To compute sign bit: by using Ex-or

operation for 2 sign bits.

This method has the advantage of

decreasing the number of additions/subtractions,

needed, as well as handling negative multipliers.

Results are obtained by expressing the multiplier in

Canonic Signed Digit (CSD) form. CSD

representation is useful for the design and

implementation of digital filters such as the area-

efficient programmable FIR digital filter

architecture. It enables the reduction of the number

of partial products that must be calculated fast and

also low-power consumption and low area structure

of a multiplier for DSP applications.

CSD representation is unique and has two main

properties:

 the number of nonzero digits is minimal,

and

 No two consecutive digits are both

nonzero, that is, two nonzero digits are not

adjacent.

The CSD representation of an integer number

is a signed and unique digit representation that

contains no adjacent nonzero digits. Given an n-

digit binary unsigned number

X={x0,x1,……..xn-1}

and then (n+1) digit representation

Y={y0,………..,yn}.

There are two encoding method used in binary

representation of CSD.The encoding method have

two variables yi
s
 is sign bit and yi

d
 is data bit[12].

 Encoding 1 Encoding 2

yi yi
s yi

d yi
s yi

d

0 00 00

1 01 01

-1 11 10

To convert binary representation to CSD

representation is based on

2
i+j-1

+2
i+j-2

+………+2
i
=2

i+j
-2

i

Radix 2
5
 Fft Architecture Implementation In Xilinx Fpga

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 1511

IX.CSD Coding:

Xi+1 Xi Ci-1 Yi Ci Description

0 0 0 0 0 Last two bits

are zero

0 0 1 1 0 Last one bit

is one

0 1 0 1 0 Any of the

bit is one

0 1 1 0 1 Last two bits

are one

1 0 0 0 0 Last two bits

are zero

1 0 1 1 1 Any one of

the bit is

zero

1 1 0 1 1 Beginning

bit is one

1 1 1 0 1 Last two bits

are one

The CSD has 2 advantages features:

 Reduces the critical path by

computing it in parallel and it

simplifies the algebraic expressions

which minimizes the overall hardware

implementations

 Simulations are performed with the

proposed circuits and it shows high

efficiency in speed and area terms in

comparison with other previous

counterpart architecture[6].

 By using CSD multiplier with common sub

expression sharing technique , to reduce the area.

If area is reduced delay is reduced and also power

consumption is also reduced.

 Fig: Delay comparison versus Booth multiplier &CSD
multiplier.

Fig: Power comparison versus Booth multiplier& CSD

multiplier.

X.CONCLUSION :

 In this paper we have proposed 32point

FFT design using Radix 2 algorithm. It was done

by using XILINX synthesis tool on vertex kit. Here

XILINX ISE design suite is used and also Vertex

kit is named as V5XUPLX110t hence the CCM is

implemented by CSD Multiplier and CSS

technique. In addition, the hardware complexity of

the proposed CSD Multiplier used for the reduction

of area and the power consumption by

approximately 33%.The proposed architecture of

expected to be incorporated in SDR.

REFERENCES :

[1] Taesang cho & Hanho Lee, “A High –speed low-

complexity modified radix 25 FFT processor for gigabit WPAN
applications”, IEEE Journal vol.11,2011.

[2] Jung- yeol OH and Myoung-seob LIM, “New Radix

2 to the 4th power pipeline FFT
processor”,IEEETrans,Electron,vol E88-C,No.8 August 2005.

[3] S.He and .Torkelson, “Designing pipeline FFT

processor for OFDM (de)modulation”,proc.IEEE URSIInt.
Symp. sig. syst, Electron, PP.257-262,1998.

[4] J.Y.oh,J.S.cha,S.K.Kim,and M.S Lim,

“Implementation of orthogonal frequency division Multiplexing
using Radix-N Pipeline Fast Fourier Transform Processor”,

Jpn,J.Appl.Plug.,Vol.42,Part 1,no.4B,PP.1-6,2003.

[5] K.K.Parthi, “VLSI Digital Signal Processing
Systems”, John Wiley & sons,USA,1999.

[6] K.Sowjanya,B.Leele Kumari, “Design &

Performance Analysis of 32 & 64 point FFT using Radix 2
Algorithm”, AECE-IRAJ international conference,14th July

2013.

[7] S.M.Kim.J.G.Chung,and K.K.Parthi, “Low error
fixed-width CSD multiplier with efficient sign extension”, IEEE

Trans,Circuits Syst.I,Vol.50,no.12,PP.984-993,Dec 2003.

[8] G.Zhong et al, “An Energy-efficient Reconfigurable
Angle-Rotator Architecture”, Proc.IEEE ISACS,Vol.3.May

2004,PP.661-664.
[9] S.J.Jou and H.H.Wang, “Fixed-Width Multiplier for

Digital Signal processing Application”, in Proc 2000

Int.Conf.Computer Design (ICCD), Austin,Tx,sept
2000,PP.318-322.

[10]S.Cho and K.Kang, “A Low Complexity 128-pointmixed

Radix FFT Processor for MB-OFDM UWB Systems”, Journal,
Vol.32, no.1, PP.1-10, Feb 2010.

Radix 2
5
 Fft Architecture Implementation In Xilinx Fpga

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 1512

[11] D. Harini Sharma and Addanki Purna Ramesh,” Floating

point multiplier using Canonical Signed Digit”, International

Journal of Advanced Research in Electronics and

Communication Engineering (IJARECE) Vol. 2, Issue 11, Nov
2013.

[12] Gustavo A.Ruiz , MercedesGranda,” Efficient canonic

signed digit recoding”, Microelectronics Journal 42 (2011)
1090–1097.

