

 ISSN (Online) : 2319 - 8753

 ISSN (Print) : 2347 - 6710

International Journal of Innovative Research in Science, Engineering and Technology

Volume 3, Special Issue 3, March 2014

2014 International Conference on Innovations in Engineering and Technology (ICIET’14)

 On 21st& 22nd March Organized by

 K.L.N. College of Engineering, Madurai, Tamil Nadu, India

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 2358

Abstract— In (Redundant Arrays of Independent Disk)

RAID, failure of single disk is tolerated up to Level 5.

The performance of disk drives may degrade due to I/O

requests directed towards failed disk. RAID controller

supports data reconstruction in the event of a disk failure,

to recover the data from failed disk. In degraded mode,

the recovery of data from failed disk would cause

additional workflow in all operational disks. Another

mode of recovery called Hot-spare, where disks that are in

the end of their lifetime are replaced with spare disks

without requirement for additional I/O operations and

parity calculations. In this work an existing disk

replacement algorithm known as M-SSTF (Modified

SSTF) is used for early recovery of failed disk. Early

recovery of single disk failure might help tolerating

another subsequent disk failure. Hence it is important to

rebuild a failed disk as early as possible.

Index Terms— RAID, Disk Failure, Parity, Disk

Reconstruction, Disk Replacement algorithm.

I. INTRODUCTION

Many businesses, including financial institutions,

pharmaceutical companies, and trading companies, must

retain data for several years to meet legal regulatory

requirements. Emerging applications require large, high-

performance, and reliable systems with high data

throughput and short response times for requests. The

performance of storage subsystem during its recovery

from a disk is critical to applications that need both high

I/O performance and high data reliability [1].Disk arrays,

in particular, RAID-5 has become an accepted way for

designing highly available and reliable disk subsystems.

When disk failure occurs, it has an enormous impact on

the reliability and data availability of large scale storage

systems. If the second disk fails before reconstruction of

first failed disk, then data is lost [2]. Losing data is even

worse than failing to provide access to it, when it is

needed.

This paper describes and evaluates mechanism by

which the disk array failure-recovery performance can be

improved. The recovery process will be able to restore

data and fault-free, without affecting system performance

[1]. To improve the performance of the storage system

that operates at a high reliable level, a dependable

approach is required to recover a failed disk as quickly as

possible [3].

There are three modes of operation for a disk

subsystem in disk arrays [4], [5]:

A. Normal mode – where all the disks are operational.

B. Degraded mode – where one (or more) disk have

failed. If one disk fails, accessing blocks in that

makes significant increase in system load to recreate

lost data blocks by parity calculations.

C. Rebuild mode - where disks are still down, but

process of reconstructing missing information on

spare disks is still in progress. The rebuild process

should be started quickly after a disk failure occurs,

since the pseudo-normal operating mode provides a

mean response time close to normal mode.

Recovery of Disk Failure in RAID-5 Using

Disk Replacement Algorithm
M.P.Ramkumar Dr.N.Balaji , G.Rajeswari

Dept of CSE, Thiagarajar College of Engineering , Madurai, India.

 Professor & Head , Dept of IT, KLN College of Engineering, , India.

Dept of CSE, Thiagarajar College of Engineering, Madurai, India.

Recovery of Disk Failure in RAID-5 Using Disk Replacement Algorithm

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 2359

Fig. 1. Disk Recovery in RAID-5

P1, P2, P3, P4- Primary disks

S1, S2, S3, S4-Secondary disks

Fig.1 shows the RAID5 array with primary and

secondary data and its parity. Replacement of disk takes

place in two cases:

Case 1: Disk which is about to fail is considered based

on threshold value of lifetime [6] and replaced using a

spare disk. Failed disk is mirrored in a spare disk without

affecting normal I/O requests of other disks.

Case 2: Failure of disk leads to operation of RAID

under degraded mode. In this case, disk replacement is

done from secondary copy in rebuild mode. Failed disk is

identified using parity of primary data. The copy of

primary that resides on secondary is also identified using

relevant parity. Failed disk is recovered using disk

replacement algorithm.

Performance of disk array in degraded mode is

eradicated by fast recovery using disk replacement

algorithm with reduced seek time.

II. RELATED WORK

Thomasian Alexander, and Mario Blaum [1], used a

tradeoff between RAID-1 and RAID-5, named Track-

Based Recovery (TBR) to balance the storage efficiency

and the recovery performance. This algorithm provides a

tradeoff between block-based recovery and cylinder-based

recovery, and balances the user response time and the

recovery duration. However, TBR requires much more

buffer space compared to block-based recovery.

In another work, Xin, Qin, Ethan [2] analyzed the

performance of RAID with respect to reconstruction

algorithms. They describe and briefly evaluate two

alternatives termed stripe-oriented reconstruction and

disk-oriented reconstruction.

Feasible group-EDF algorithm proposed by S. Y.

Amdani and M. S. Ali [7], works both in under load and

overload conditions and produced better throughput

compared to older algorithms. It also applies Shortest

Seek Time First (SSTF) algorithm and check feasibility

of transaction [7].

Hossein Rahmani, Mohammad Mehdi Faghih and

Mohsen Ebrahimi Moghaddam [8], proposed a novel

real-time disk-scheduling algorithm called WRR - SCAN

(Weighted-Round- Robin-SCAN) to provide quality that

guarantees for all in-service streams encoded at variable

bit rates and bounded response times for periodic jobs.

Ajay Dholakia, Evangelos Eleftheriou, Xiao-Yu Hu,

Ilias Iliadis, and Jai Menon [9], use a EVEN ODD

technique, for tolerating up to two disk failures in RAID

6 architectures. EVEN ODD employs the addition of

only two redundant disks and consists of simple

exclusive-OR computations. This redundant storage is

optimal, in the sense that two failed disks cannot be

retrieved with less than two redundant disks.

 Paolo Valente and Fabio Checconi [10], revealed that

high throughput can be recovered by just idling the disk

for a short time interval after the completion of each

request. Budget Fair Queuing (BFQ) combined with

proper back-shifting of request time stamps may allow a

time-stamp-based disk scheduler to preserve and

guarantees a high throughput.

III. PROPOSED WORK

 The intention here is to identify whether the disk

is in the end of its lifetime or has failed. Once the disk is

identified attempt is made to recover it at the earliest, so

that system runs on Normal mode. The identified disk is

replaced abruptly using a disk replacement algorithm.

A. Identifying Disk Failure

When one disk fails, accessing I/O requests in that disk

would require reconstruction of data on remaining disks

in RAID set. Increase in I/O requests for data recovery

from surviving disk affects the disk bandwidth [7]. Mean

Time Between Failure (MTBF) measures (in hours) the

average life expectancy of a disk. Today, data centers

deploy thousands of disks in their storage infrastructures.

The greater the number of disks in a storage array, the

greater the probability of a disk failure in the array. For

example, consider a storage array of 100 disks, each with

an MTBF of 750,000 hours. The MTBF of this collection

of disks in the array, therefore, is 750,000/100 or 7,500

hours. This means that a disk in this array is likely to fail

at least once in 7,500 hours [11]. In a RAID group of 14,

a 144GB disk on a Fibre Channel interface will require a

minimum of 3 hours with no other I/O to reconstruct the

failed disk. A 500GB will require 10.4 hours to read all

other disks and reconstruct a failed disk [6].

Identifying the disk which is going to fail uses a

threshold value of disk lifetime as 7500 hours for 100

disks in storage array. This paper considered RAID-5

which tolerates single disk failure can be recovered by

parity based reconstruction in degraded mode. Failed disk

can be identified and recovered using mirroring or parity

calculations. Mirroring maintains the copy of primary

disk in the secondary disk. The primary and secondary

disks can satisfy read requests in parallel to enhance

performance in terms of throughput and response time.

 P1

Parity of

Secondar

y

 P2

S1

 P3

S2

 P4

 S3

Parity of

Primary

 S4

 Spare

 Disk

Disk 1 Disk 2 Disk 3 Disk 4 Disk 5 Disk 6

Case 1

RAID Controller

Case 2

http://dl.acm.org/author_page.cfm?id=81100250134&coll=DL&dl=ACM&trk=0&cfid=407571993&cftoken=33284339
http://dl.acm.org/author_page.cfm?id=81351596310&coll=DL&dl=ACM&trk=0&cfid=407571993&cftoken=33284339
http://dl.acm.org/author_page.cfm?id=81100203289&coll=DL&dl=ACM&trk=0&cfid=407571993&cftoken=33284339
http://dl.acm.org/author_page.cfm?id=81100196721&coll=DL&dl=ACM&trk=0&cfid=407571993&cftoken=33284339

Recovery of Disk Failure in RAID-5 Using Disk Replacement Algorithm

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 2360

Parity methods tend to increase response time due to

recalculation of parity and recovery of data.

B. Disk Replacement Algorithm

This work had deliberate to use existing disk scheduling

algorithm known as M-SSTF (Modified – SSTF) [12], an

evolution of basic Shortest Seek Time First (SSTF)

algorithm [13]. The objective of this algorithm is:

1. Reducing seek time

2. Minimizing response time of requests

In this method, either the identified disk or the disk

that has primary and secondary parts of failed disk can be

divided into two areas as lower half and upper half area

based on current position of read/write head [12].

 Recalculation of parity is required if the failed disk has

parity. Data recovery from failed disk takes much time

and causes overall disk I/O requests to be delayed. So,

early recovery of failed disks can be achieved by reducing

disk seek time.

M-SSTF ALGORITHM

C. Performance Evaluatuion

The key performance metrics in disk array are seek time,

rotational latency, and data transfer rate [14], [2].

Seek time is defined as time taken to position the R/W

heads across the platter with a radial movement (moving

along the radius of the platter) [11].

Rotational Latency is defined as time taken by the

platter to rotate and position the data under the R/W head

[11].

Data transfer rate is the average amount of data per

unit time that the drive can deliver to the HBA [11].

 Considering these metrics, the simplest way to

decrease rotational latency is to increase the disks

rotational speed as it’s depend on hardware components.

Also data transfer rate is depending on the disk

subsystem components and its interface bandwidth.

Reducing average seek time only requires facts about the

relative seek distance between the requested data [14]. As

the storage capacity of disk array is growing at faster rate

than disk I/O speed, the disk recovery process takes much

longer time [15].

Since the seek time is responsible for the most time of

disk access, most studies on the disk scheduling have

focused on the reduction of the average seek distance or

the number of cylinders from the current head position to

the requested cylinder to improve the response time [16].

1) Reducing Seek Time Latency:

To maintain disk array in Normal mode, failed disk is

replaced at the earliest by reducing seek time. Assume

the following three different cases of I/O requests to

failed disk.

Seek time is calculated using existing M-SSTF

algorithm and the results are compared with existing disk

replacement algorithms like FCFS (First Come First

Serve), SSTF.

Case 1: Consider the disk with 6 I/O requests to blocks

on cylinders 17, 2, 34, 25, 45, 20. M-SSTF algorithm

count the number of requests on lower half area and

upper half area with the assumption that current

read/write head position is at cylinder 30.

 As per the algorithm, number of requests on lower

half area is higher, so it will be served first. From current

head position serve the requests in lower half area first

based on Shortest seek time. So here first move of

read/write head is to cylinder 25, since it is the shortest

seek distance in lower half area. Similarly all remaining

requests in lower half area and then upper half area

requests are served.

 The total head movement is 67 cylinders .For the

same request queue, the total head movement is 79

cylinders in SSTF and 114 cylinders in FCFS. Fig. 2

shows the read/write head movement of M-SSTF, SSTF

and FCFS algorithms respectively.

Comparison of M-SSTF algorithm with SSTF and

FCFS algorithms based on Total Head Movement and

Average Seek Time is shown in Table 1. M-SSTF takes

average seek time as 11.16ms for recovery while SSTF

and FCFS takes average seek time as 13.16ms and 19ms

respectively. From this analysis, M-SSTF algorithm has

reduced average seek time and Total Head Movement.

1 Procedure M-SSTF (read requests)

2 /* FD-Failed disk, SD-Secondary disk,

3 LH- lower half area, UH- Upper Half area*/

4 BEGIN

5 // Identify FD

6 // Create Queue of read requests from FD/SD.

7 /* Using current read/write head position in

FD/SD

 consider the disk into two areas: LH and UH */.

8 // Count number of requests on both areas.

9

10 IF (number of requests in LH > number of requests in

 UH)

11 Serve LH requests

12 ELSE Serve UH requests

13 END IF

14 IF (number of requests in LH < number of requests in

 UH)

15 Serve UH requests

16 ELSE Serve LH requests

17 END IF

18

19 IF (number of requests in LH = = number of requests in

 UH)

20 IF (current read/write head position is in LH)

21 Serve LH requests

22 ELSE Serve UH requests

23 END IF

24 END IF

25

26 // end Procedure

27 END

Recovery of Disk Failure in RAID-5 Using Disk Replacement Algorithm

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 2361

Fig. 2. Disk head movement for Case1

TABLE 1:

Algorithms

Total Head

Movement

(No. of

Cylinders)

Average

Seek

Time(ms)

M-SSTF 67 11.16

SSTF 79 13.16

FCFS 114 19

Case 2: Consider disk array with 8 requests on cylinders

50, 58, 64, 12, 78, 60, 73, and 38. M-SSTF checks

number of requests on lower half and upper half from the

present read/write head position. If read/write head is

presently at cylinder 55 then lower half has 3 and upper

half has 5 requests. M-SSTF algorithm will serve upper

half requests first and then lower half requests, since

upper half requests are more than lower half requests.

Read/write head is first moves to cylinder 58 since it is

the nearest from the current read/write head position. All

the requests in the upper half area have been served using

shortest seek time, then read/write head is ready to serve

lower half requests .

 The total head movement is 89 cylinders. For the same

request queue, the total head movement is 99 cylinders in

SSTF and 203 cylinders in FCFS algorithms. Fig. 3 shows

the read/write head movement of M-SSTF, SSTF and

FCFS algorithms respectively.

M-SSTF algorithm has average seek time 11.25ms and

Total Head Movement as 89. SSTF and FCFS algorithm

has average seek time as 12.37ms, 25.37ms and Total

Head Movement as 99, 203 respectively. M-SSTF has

less average seek time and total head movement where

compared with SSTF and FCFS algorithms as shown in

Table2.

Fig. 3. Disk head movement for Case2

 TABLE 2:

Algorithms

Total Head

Movement

(No. of

cylinders)

Average

Seek

Time(ms)

M-SSTF 89 11.25

SSTF 99 12.37

FCFS 203 25.37

Case 3: Consider disk array with 10 requests on

cylinders 22, 30, 6, 92, 81, 53, 90, 100, 27, and 14. M-

SSTF checks number of requests on lower half and upper

half based on current read/write head position. If

read/write head is presently at cylinder 45, then lower

half has 4 and upper half has 4 requests. As per the

algorithm, since number of requests is same on both

lower and upper half, now decision is based on location

of current read/write head position. Since read/write head

is currently in lower half, first it moves to cylinder 30 and

serves rest of the lower half requests. Once all the

requests in the lower half area have been served; now

read/write head is ready to serve upper half requests.

 From Table 3, the M-SSTF algorithm takes

average seek time as 12.9ms which is less than other

algorithms like SSTF takes 14.9ms, FCFS takes 31.3ms.

 The total head movement is 129 cylinders. For the

same request queue, the total head movement is 149

cylinders in SSTF and 313 cylinders in FCFS. Fig. 4

shows the read/write head movement for M-SSTF, SSTF

and FCFS disk replacement algorithms.

Recovery of Disk Failure in RAID-5 Using Disk Replacement Algorithm

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 2362

Fig. 4. Disk head movement for Case3

 TABLE 3:

Algorithms

Total Head

Movement (No.

of cylinders)

Average Seek

Time(ms)

M-SSTF 129 12.9

SSTF 149 14.9

FCFS 313 31.3

Hence from Table 1, 2, and 3, it is revealed that M-SSTF

algorithm has taken less average seek time when

compared with SSTF and FCFS disk replacement

algorithms.

IV. CONCLUSION

The existing M-SSTF algorithm used for disk scheduling

has been realized for disk replacement in this work. It has

improved performance in the early recovery process of

RAID-5. The basic idea is to treat the faulty disks more

favorably, or give higher priority to the faulty disks.

Identifying a disk which is about to fail or a failed disk is

done at the earliest and reconstruction is completed into a

spare disk, this will improve the performance of the

system by avoiding it from entering into degraded mode

of operation. Recovery from disk failure is done so early

by reducing the seek time. The number of requests with

minimal value has been considered. Experimental results

show that M-SSTF disk replacement algorithm has given

reduced seek time than SSTF and FCFS disk replacement

algorithms. The results based on performance evaluation

have demonstrated the effectiveness of M-SSTF in terms

of reduced seek time that in turn results in faster recovery.

When number of requests increases, definitely there will

be a major performance variation in terms of average seek

time between the M-SSTF, SSTF and FCFS.

V. FUTURE WORK

 As a future work, even though the rotational speed of

platters is under the control of spindle motors, finding the

conceptual way to reduce rotational latency and

probabilities of merging or optimizing the disk

replacement algorithms in order to achieve minimized

seek time.

ACKNOWLEDGMENT

The authors wish to thank the anonymous reviewers of the

paper for their excellent feedback and comments, all of which

helped to improve the quality of presentation.

REFERENCES

[1] Alexander Thomasian and Mario Blaum, “Higher reliability

redundant disk arrays: Organization, operation, and coding,”

ACM Transactions on Storage (TOS), vol. 5, no. 3, pp.1-59,
2009.

[2] Xin, Qin, Ethan L. Miller, Thomas Schwarz, Darrell DE Long,
Scott A. Brandt, and Witold Litwin, “Reliability mechanisms

for very large storage systems,” Proceedings on 20th

IEEE/11th NASA Goddard Conference on Mass Storage

Systems and Technologies, (MSST 2003),pp. 146-156, 2003.

[3] Shenggang Wan, Xubin He, Jianzhong Huang, Qiang Cao,
Shiyi Li, and Changsheng Xie, “An Efficient Penalty-Aware

Cache to Improve The Performance of Parity-Based Disk

Arrays under Faulty Conditions, ” IEEE Transactions on

Parallel and Distributed Systems, vol. 24, no. 8, pp. 1500-

1513, August 2013.

[4] Alexander Thomasian, Gang Fu, and Chunqi Han,
“Performance of Two-Disk Failure-Tolerant Disk Arrays,”

IEEE Transactions on Computers, vol. 56, no. 6, pp. 799-814,
June 2007.

[5] Cheng-Han Tsai, Tai-Yi Huang, Edward T.H. Chu, Chun-Hang

Wei, and Yu-Che Tsai, “An Efficient Real-Time Disk-

Scheduling Framework with Adaptive Quality Guarantee, ”

IEEE Transactions on Computers, vol. 57, no. 5, pp. 634-657,
May 2008.

[6] Elerath, Jon G, and Michael Pecht, “Enhanced reliability

modeling of RAID storage systems,” 37th Annual IEEE/IFIP

International Conference on Dependable Systems and

Networks, (DSN'07), pp. 175-184, 2007.

[7] S.Y.Amdani and M.S.Ali, “An Improved Group-EDF: A Real-

Time Disk scheduling algorithm, ” International Journal of

Computer Theory and Engineering, vol. 5, no. 6, pp. 873-876,
December 2013.

[8] Hossein Rahmani, Mohammad Mehdi Faghih, and Mohsen

Ebrahimi Moghaddam, “A new real time disk-scheduling

method based on GSR algorithm, ” Elsevier Journal of Systems

and Software, vol. 83, pp. 2147–2164, November 2010.

[9] Ajay Dholakia, Evangelos Eleftheriou, Xiao-Yu Hu, Ilias

Iliadis, and Jai Menon, “A new intra-disk redundancy scheme

for high-reliability RAID storage systems in the presence of

unrecoverable errors, ” ACM Transactions on Storage (TOS),
volume 4, May 2008. ISSN: 1553-3077.

[10] Paolo Valente and Fabio Checconi, “High Throughput Disk

Scheduling with Fair Bandwidth,” IEEE Transactions on

Computers, vol. 59, no. 9, pp. 1172-1186, September 2010.

[11] G. Somasundaram and A. Shrivastava, Information Storage and

Management: Storing, Managing, and Protecting Digital

Information. Wiley, 2009.

[12] Manish Kumar Mishra, “Major Half Served First(MHSF) Disk

Scheduling Algorithm,” International Journal of Computer

Applications & Information Technology, vol. 2, pp. 31-35,
January 2013.

[13] Hyokyung Bahn, Soyoon Lee, and Sam H. Noh, “P/PA-SPTF:

Parallelism-aware request scheduling algorithms for MEMS-

based storage devices, ” ACM Transactions on Storage (TOS) ,
vol. 5, March 2009. ISSN: 1553-3077.

[14] Elizabeth Varki, Arif Merchant, Jianzhang Xu, and Xiaozhou

Qiu, “Issues and Challenges in the Performance Analysis of

Real Disk Arrays, ” IEEE Transactions on Parallel and

Distributed Systems, vol. 15, no. 6, pp. 559-574, June 2004.

[15] Zhang, Jianyong, Anand Sivasubramaniam, Qian Wang, Alma

Riska, and Erik Riede, “Storage performance virtualization via

throughput and latency control, ” ACM Transactions on

Storage (TOS), vol.2, no. 3, pp.283-308, 2006.

[16] Yin-Fu Huang and Jiing-Maw Huang, “Disk Scheduling on

Multimedia Storage Servers, ” IEEE Transactions on

Computers, vol. 53, no. 1, pp. 77 – 82, January 2004.

http://www.sciencedirect.com/science/article/pii/S016412121000169X
http://www.sciencedirect.com/science/article/pii/S016412121000169X
http://www.sciencedirect.com/science/article/pii/S016412121000169X
http://www.sciencedirect.com/science/article/pii/S016412121000169X
http://www.sciencedirect.com/science/article/pii/S016412121000169X
http://www.sciencedirect.com/science/journal/01641212
http://www.sciencedirect.com/science/journal/01641212
http://www.sciencedirect.com/science/journal/01641212
http://dl.acm.org/author_page.cfm?id=81100250134&coll=DL&dl=ACM&trk=0&cfid=407571993&cftoken=33284339
http://dl.acm.org/author_page.cfm?id=81351596310&coll=DL&dl=ACM&trk=0&cfid=407571993&cftoken=33284339
http://dl.acm.org/author_page.cfm?id=81100203289&coll=DL&dl=ACM&trk=0&cfid=407571993&cftoken=33284339
http://dl.acm.org/author_page.cfm?id=81100203289&coll=DL&dl=ACM&trk=0&cfid=407571993&cftoken=33284339
http://dl.acm.org/author_page.cfm?id=81100203289&coll=DL&dl=ACM&trk=0&cfid=407571993&cftoken=33284339
http://dl.acm.org/author_page.cfm?id=81100196721&coll=DL&dl=ACM&trk=0&cfid=407571993&cftoken=33284339
http://dl.acm.org/author_page.cfm?id=81100385889&coll=DL&dl=ACM&trk=0&cfid=407571993&cftoken=33284339
http://dl.acm.org/author_page.cfm?id=81317496658&coll=DL&dl=ACM&trk=0&cfid=407571993&cftoken=33284339
http://dl.acm.org/author_page.cfm?id=81350592925&coll=DL&dl=ACM&trk=0&cfid=407571993&cftoken=33284339

	page2

