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Abstract: The feature of the derivative and integration is one of the most important tools to realise the beauty of calculus. Its descriptive power 

comes from the fact that it analyses the behaviour at scales small enough that its properties changes linearly, so avoiding complexities that arises 

at larger one. Fractional Calculus generalizes this concept from integer to non integer order. This paper comprises an application of this 
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generalize the traditional classical inventory model. Lastly a numerical example is given.   
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INTRODUCTION 

Fractional Calculus (FC) is a branch of applied mathematics 

that deals with generalization of the operation of 

derivatives/integrals and differential equation of an arbitrary 

order (including complex orders)[8],[13],[24],[27]. The 

theory of FC is one of the strongest tool to describe many 

physical phenomena which are neglected in the model 

described by the classical integer order calculus. This is 

almost three centuries old as the conventional calculus but 

not very popular among science or engineering community.  

Since then the subject of Fractional Calculus caught the 

attention of many great mathematicians (pure and applied) 

such as N.H.Abel, L.Euler, J.Fourier, H.K.Grunwald, 

J.Hadamarad, G.H.Hardy, O.Heviside, P.S.Laplace, 

G.W.Lebinitz, A.V.Letnikov , B.Riemann, J.Liouville, 

M.Caputo, M.Reisz and H.Weyl are directly or indirectly 

contributed to its development. The mathematics involving 

fractional order derivatives or integrals are appeared very 

different from that of integer order calculus. Initially there 

were almost no practical application of this field and due to 

this it was considered that fractional calculus as an abstract 

area containing only rigorous mathematical manipulations. 

So for past three centuries this subject was with only 

mathematicians. But in recent years(forty years almost) this 

subject has been applied to several fields of engineering, 

science and economics[11]. Some of the areas where 

Fractional Calculus has made an important role that are 

included viscoelasticity and rheology [3], electrical 

engineering[14], electrochemistry, biology, biophysics and 

bioengineering, electromagnetic theory[15], mechanics, 

fluid mechanics[12], signal and image processing theory[6], 

particle physics,  control theory[14] and many other 

field[1],[20],[4],[10],[23]. However there are some areas of 

management and science where this branch of mathematics 

remains untouched. 

 

The application of Fractional Calculus and Fractional 

Differential equation are not being used so far in any 

Operation Research model. Our objective in this paper is to 

develop the traditional classical EOQ based inventory model 

[31[,[32],[9],[2]. to a generalized EOQ based inventory 

model emphasis on some certain assumption by using the 

potential application of Fractional Calculus. In traditional 

EOQ based inventory model[2], the demand(deterministic) 

rate is typically assumed to be of fixed 1
st
  order 

differentiation and holding cost is calculated on the fixed 1
st  

order integral of inventory level. We may develop our 

consideration by accepting that the demand rate may varies 

high or low according to the market situation. So here we 

may consider that demand rate may be taken as fractional 

order differentiation instead of fixed 1
st
 order differentiation. 

Similarly we calculate the holding cost is of fractional order 

integral of inventory level rather than that of fixed 1
st
 order 

integral.  

 

Here we have applied the concept of derivative/integrals 

with an emphasis on Caputo and Riemann-Liouville 

fractional derivatives and have some interesting result and 

ideas that demonstrate the generalized EOQ based inventory 

model. Fractional derivatives and fractional integrals have 

interesting mathematical properties that may be utilized to 

developed our motivation. In this article, first we give a brief 

historical review of the general principles, definitions and 

several features of fractional derivatives/integrals and then 

we review some of our ideas and findings in exploring 

potential applications of fractional calculus in inventory 

control model.                                       

BRIEF HISTORY RELATED TO FRACTIONAL 

CALCULUS 

As to history of Fractional Calculus, already in 1695 

L‟Hospital raised the question to Lebinitz, as the meaning of  

n

n

dx

yd
   if n=1/2, that is “what if n is fractional?” Lebinitz 

replied “This is an apparent paradox from which one day 

useful consequence will be drawn”. 
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S.F Lacroix was the first to mention in some two pages a 

derivative of arbitrary order in a 700 pages text book of 

1819. 

 

He developed the formula for the nth derivative of y=
mx , m 

is a positive integer, 

yD
n

=
)!(

!

nm

m nmx , where n( m) is an integer.    (2.1) 

Replacing the factorial symbol by the well known Gamma 

function, he obtained the formula for the fractional 

derivative, 

                                                           

xxD
)1(

)1(
)( ,                     (2.2) 

Where ,  are fractional numbers. 

In particular he had, 
x

x xD 2
)(

)2(
)(

2/1

2
3

2/1
.  (2.3) 

Again the normal derivative of a function f is defined as, 

h

xfhxf
xf

h
D

)()(
)( lim

0

1
,                  (2.4) 

And  D
2
f(x)

h

xhx ff
h

)()(
11

0
lim  

                                                 

=
h

xfhxfhxf

h

)()()2(
lim

0

. 

Iterating this operation yields an expression for the nth 

derivative of a function. As can be easily seen and proved by 

induction for any natural number n, 

D
n
f(x) = 

n

r

nn

h
h

0
0

)1(lim
r

n
f(x+(n-r)h).          (2.5) 

Where 
r

n
=

)!(!

!

rnr

n
                                     (2.6) 

Or equivalently,  

)()(
00

)1(lim rhxf
r

n
xf

n

r

rn

h

n

hD       (2.7) 

The case of n=0 can be included as well.  

 

The fact that for any natural number n the calculation of nth 

derivative is given by an explicit formula (2.5) or (2.7).  

 

Now the generalization of the factorial symbol (!) by the 

gamma function allows 

             

r

n
= 

)!(!

!

rnr

n
=

)1()1(

)1(

rnr

n
                  (2.8) 

Which also valid for non integer values.  

 

Thus on using of the idea (2.8), fractional derivative leads as 

the limit of a sum given by  

)(xfD lim
0h

)(
)1()1(

)1(1

0

)1( rhxf
rr

n

r

r

h
.    (2.9) 

Provided the limit exists.      Using the identity   

)(

)(

)1(

)1(
)1(

r

r

r

           (2.10) 

The result (2.9) becomes, 

)(xfD lim
0h

)(
)1(

)(

)( 0

rhxf
r

rn

r

h
     (2.11)                 

When α is an integer, the result (2.9)reduce to the derivative 

of integral order n as follows in (2.5). 

 

Again in 1927 Marchaud formulated the fractional 

derivative of arbitrary order α in the form given by, 

)(xfD dt
tfxfxf

x

txx 0

1

)(

)()(

)1()1(

)(
 , Where 

0<α<1               (2.12) 

 

In 1987 Samko et al had shown that (2.12) and (2.9) are 

equivalent. 

Replacing n by (-m) in (2.7), it can be shown that 

)(
0

xfD
m

x
)(

00
lim rhxf

r

mn

r

m

h
h  

=
)(

1

m

x

0

)(
)1(

tx
m

f(t)dt                                (2.13) 

                            Where 

!

)1)........(2)(1(

r

rmmmm

r

m
            (2.14) 

 

This observation naturally leads to the idea of generalization 

of the notations of differentiation and integration by 

allowing m in (2.13) to be an arbitrary real or even complex 

number. 

Fractional derivatives and integrals: 

The idea of fractional derivative or fractional integral can be 

described in another different ways. 

 

First, we consider a linear non homogeneous nth order  

ordinary differential equation , 

)(xfyD
n

,      b≤x≤c                                           (2.1.1) 

 

Then {1, x, x
2, 

x
3
, ........,x

n-1
} is a fundamental set the 

corresponding homogeneous equation D
n

y=0. f(x) is any 

continuous function in [b,c], then for any a (b,c), 
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 y(x)= dttf
n

x

a

n

tx
)(

)!1(

)(
1

                                      (2.1.2) 

Is the unique solution of the equation (2.1.1) with the initial 

data y
k )(

(a)=0, 

for 10 nk . Or equivalently, y(x)= 

D
n

xa
f(x)=

x

a

n

tx
n

)(
1

)(

1
f(t)dt                       (2.1.3) 

Replacing n by  ,where Re( )>0 in the above formula 

(2.1.3),we obtain the Riemann-Liouville definition of 

fractional integral that was reported by Liouville in 1832 

and by Riemann in 1876 as )(xfDxa
 = )(xfJ xa

= 

dttf

x

a

tx )(
)(

1
)(

1

                              (2.1.4) 

Where 

)(xfDxa
= )(xfJ xa

= dttf

x

a

tx )(
)(

1
)(

1

 

is the Riemann-Liouville integral operator. When a=0 

,(2.1.4) is the Riemann definition of integral and if a= - , 

(2.1.4)  represents Liouville definition. Integral of this type 

were found to arise in theory of linear ordinary differential 

equations where they are known as Eulier transform of first 

kind.  

 

If a=0 and x>0 ,then the Laplace transform solution the 

initial value problem  

                    D
n

y(x)=f(x),          x>0, y
k )(

(0)=0, 

10 nk                                                  (2.1.5) 

                  is  )(sy = s
n

)(sf                           (2.1.6) 

Where )(sy  and )(sf  are respectively the Laplace 

transform of the function y(x) and f(x). 

 

The inverse Laplace transform gives the solution of the 

initial value problem (2.1.5) as 

                                            y(x)= )(
0

xfD
n

x
  

Again from (2.1.6) we have y(x)= )}({
1

syL  

                                                       = )}({
1

sfsL
n

 

Thus we have )(
0

xfD
n

x
= )}({

1
sfsL

n
         (2.1.7) 

i.e 

)}({
1

sfsL
n

= )(
0

xfD
n

x
=

dttf
n

x
n

tx )(
)(

1

0

1

)(                                       (2.1.8) 

 y(x)= 

)(
0

xfD
n

x
= )}({

1
sfsL

n
=

dttf
n

x
n

tx )(
)(

1

0

1

)(    

 

This is the Riemann-Liouville integral formula for an integer 

n. Replacing n by real  gives the Riemann-Liouville 

fractional integral (2.1.3) with a=0. 

 

In complex analysis the Cauchy integral formula for the nth 

derivative of  an analytic function f(z) is given by 

D
n

f(z) = dt
tf

i

n

C

n

zt )(
1

)(

2

!
                                 (2.1.9) 

Where C is closed contour on which f(z) is analytic , and t=z 

is any point inside C and t=z is a pole.  

 

If n is replaced by an arbitrary number  and n  by 

)1( , then a derivative of arbitrary order  can be 

defined by, 

D f(z)= dt
tf

i
C zt )(

1

)(

2

)1(
                      (2.1.10) 

where t=z is no longer a pole but a branch point. 

 

In (2.1.10) C is no longer appropriate contour, and it is 

necessary to make a branch cut along the real axis from the 

point z=x>0 to negative infinity. 

 

Thus we can define a derivative of arbitrary  order by loop 

integral 

Dxa
f(z)= )(

2

)1(
)(

1

tf
i

x

a

zt                (2.1.11) 

Where )(
1

zt = exp[-( +1)ln(t-z)] and ln(t-z) is real 

when t-z>0. Using the classical method of contour 

integration along the branch cut contour D, it can be shown 

that 

D z0
 f(z)= dttf

i
D

zt )(
2

)1(
)(

1

                                               

=
i2

)1(
[1-exp{-2 i( +1)}] dttf

z

zt )(
0

1

)(  

                                               

= dttf

z

zt )(
)(

1

0

1

)(                             (2.1.12) 

Which agrees with Riemann-Liuville definition (2.1.3) with 

z=x, and a=0, when  is replaced by -  

Fractional Integration, Fractional Differential Equation 

using Laplace Transformed Method: 

One of the very useful results is formula for Laplace 

transform of the derivative of an integer order n of a 

function f(t) is given by 
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L{ )()( tf n
}= )(sfs n

-

1

0

)(1 )0(
n

k

kkn fs        (2.2.1) 

= )(sfs n
-

1

0

)1( )0(
n

k

knk fs                            (2.2.2) 

= )(sfs n
-

n

k

knk fs
1

)(1 )0(  

Where )0()( knf = kc  represents the physically realistic 

given initial conditions and  )(sf being the Laplace 

transform of the function f(t).  

 

Like Laplace transform of integer order derivative, it is easy 

to shown that the Laplace transform of fractional order 

derivative is given by 

L{ Dt0
f(t)}= )(sfs  - 0

1

0

1

0

)]([ t

k

t

n

k

k tfDs   (2.2.3) 

= )(sfs - k

n

k

k cs
1

1
,                                        (2.2.4) 

Where n-1 n  and kc  = )]([0 0
tfD

k
t t

 (2.2.5)   

Represents the initial conditions which do not have obvious 

physical interpretation. Consequently, formula (2.2.4) has 

limited applicability for finding solutions of initial value 

problem in differential equations. 

 

We now replace  by an integer-order integral J
n

 and 

)()(
)(

ttf fD
nn

 is used to denote the integral order 

derivative of a function f(t). It turns out that  

JD
nn

=I,   DJ
nn

I.                                     (2.2.6) 

This simply means that D
n

  is the left ( not the right 

inverse ) of J
n

. It also follows in (2.2.9) with =n that  

DJ
nn

f(t) = f(t)-
!

)0(
1

0

)(

k

tf
k

n

k

k

,          t>0        (2.2.7) 

Similarly, D  can also be defined as the left inverse of 

J .We define the fractional derivative of order >0 with 

n-1 n by 

Dt0
 f(t)= D

n

D
n )(

f(t) 

 = D
n

J
n

f(t) 

= D
n

[ df
n

t
n

t )(
)(

1

0

1

)( ]      (2.2.8) 

On using (2.1.3) 

Or,  Dt0
 f(t)= d

n
ft

n
t

n

)(
)(

1 )(

0

1

)(  

Where n is an integer and the identity operator „I‟ is defined 

by 

)()(
00

tftf JD =If(t)=f(t), so that   D  J =I,   

0. 

Due to the lack of physical interpretation of initial data ck
 

in (2.2.4), Caputo and Mainardi adopted as an alternative 

new definition of fractional derivative to solve initial value 

problems. This new definition was originally introduced by 

Caputo in the form 

Dt

C

0
f(t)= J

n

D
n

f(t) 

= d
n

ft
n

t
n

)(
)(

1 )(

0

1

)(                           (2.2.9) 

 

Where n-1 n  and n is an integer. 

It follows from (2.2.8) and (2.2.9) that 

Dt0
f(t)= D

n

J
n

f(t) J
n

D
n

f(t)= Dt

C

0
f(t) (2.2.10) 

 

Unless f(t) and its first (n-1) derivatives vanish at t=0. 

Furthermore , it follows (2.2.9) and (2.2.10) that 

J Dt

C

0
f(t) = J J

n

D
n

f(t)= DJ
nn

f(t) = f(t) 

!
)0(

1

0

)(

k

tf
k

n

k

k

                           (2.2.11) 

This implies that Dt

C

0
f(t)= 

Dt0
[f(t) )0(

)1(

)(
1

0

ft k
n

k

k

k
] 

                                          

= Dt0
f(t) )0(

)1(

)(
1

0

ft k
n

k

k

k
             (2.2.12)  

This shows that Caputo‟s fractional derivative incorporates 

the initial values )0(
)(

f
k

, 

                         for  k=0,1,2,…….,n-1. 

The Laplace transform of Caputo‟s fractional derivative 

(2.2.12) gives an interesting formula           L{ Dt

C

0
f(t)}= 

)(sfs - sf
k

n

k

k 1
1

0

)(

)0(                                  (2.2.13) 

Transform of )(
)(

tf
n

 This is a natural generalization of 

the corresponding well known formula for the Laplace when 

=n and can be used to solve the initial value problems in 

fractional differential equation with physically realistic 

initial conditions. 

 

Some geometric and physical interpretation of Fractional 

Calculus is being referred in [26], [30]. 

Mittag-Leffler function: 

The one of the very important function, used in fractional 

calculus known as Mittag-Leffler function [17], is the 

generalization of the exponential function 
ze . One 
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parameter Mittag-Leffler function is denoted by E (z) and 

is defined by the infinite series, 

E (z) =

0 )1(k

k

k

z
 ,                                     (2.3.1) 

The two parameter function of this type, which plays a very 

important role in solving the fractional differential 

equations, is defined by the infinite series, 

E ,
(z) =

0 )(k

k

k

z
  , where >0, >0          (2.3.2) 

It follows from the definition (2.3.2) that 

e
zz

E
z

k
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z   (2.3.4) 
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2
0

2

2
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3,1
z
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z e

z
z

z
zz

E
z

k

k

k

k

k

k

   (2.3.5) 

And in general   }
!

{
1

)(
2

0
1,1

m

k

k

z

mm k
z z

e
z

E  (2.3.6) 

The hyperbolic sine and cosine are also particular cases of 

the Mittag-Leffler function (2.3.2) as given by 

)cosh(
)!2()12(

)(
0

2

0

2

2

1,2
z

kk k

k

k

k

zz
zE      (2.3.7) 

)sinh(
)!12(

1

)22(
)(

0

12

0

2

2

2,2
z

kzk k

k

k

k

zz
zE       (2.3.8) 

Also we can show that 

)(
1,

2

1 zE )(

)1
2

(

2

0

zerfcz
k e
z

k

k

           (2.3.9) 

Where erfc(-z)is the complement of error function defined 

by 

 erfc(z) = dte
z

t22
  .                                  (2.3.10) 

For  =1, we obtain the Mittag-Leffler function in one 

parameter: 

)(
)1(

)(
0

1,
z

k
z E

z
E

k

k

                   (2.3.11) 

CLASSICAL EOQ MODEL 

Notations and Assumptions: 

                   D                                     Demand rate 

                   Q                                     Order quantity 

                   U                                     Per unit cost  

                  C1                                     Holding cost per unit  

                  C3                                     Set up cost 

                  q(t)                                  Stock level 

                    T                                    Ordering interval  

w Dual variable of T in geometric programming 

In classical EOQ based inventory model, we already have 

 

D
dt

tdq )(
 ,     for 0 t T  = 0,       otherwise.      (3.1) 

 

With the initial condition q(0)=Q and with the boundary 

condition q(T)=0. 

 

Figure 1.1:  Development of inventory level over time. 

By solving the equation (3.1), we have q(t)=Q-Dt, for 0 t T                                                  

(3.2)  

 

And on using the boundary condition q(T)=0, we have 

Q=DT.                                                (3.3) 

Holding cost, 

HC(T)=

2
)

2
(]

2
[)()(

2

1

2

10

2

0

1

0

11

DTCDT
QTC

Dt
QtCdtDtQCdttqC T

t

T

t

T

t

   (3.4) 

[on using (3.3)] 

 

Total cost, TC(T) =Purchasing cost(PC)+Holding 

cost(HC)+Set up cost(SC) 

=UQ + 3

2

1

2
C

DTC
.                                                  (3.5) 

Total average cost over [0,T] is given by 

TAC(T)= ]
2

[
1

3

2

1 C
DTC

UQ
T

                                      

=
T

CDTC

T

UQ 31

2
                                                  (3.6) 

Then the classical EOQ model is  

                                              Min 

TAC(T)=UD+
T

CDTC 31

2
                                        (3.7) 

Subject to, T>0.                                                                           

Solving (3.7) we can show that TAC(T) will be minimum 

for 

                                                                                       

T
*
=

1

32

C

DC
                                                 (3.8) 
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and  TAC
*
(T

*
)=UD+ DCC 312  .                                (3.9) 

GENERALIZED EOQ MODEL 

We now generalize our discussion by accepting the equation 

(3.1) as a differential equation of fractional order instead of 

the linear order. i.e we here consider that demand(D) varies 

in fractional order say , here instantaneous inventory level 

D
dt

tqd )(
    for  0≤t≤T =  0     otherwise.             (4.1) 

 

With the same initial and boundary condition as described in 

the previous problem in equation (3.1). i.e q(0)=Q and with 

q(T)=0. where D is a constant. 

 

Equation (4.1) can be rewritten as t

C D0 q(t) = -D    for 

0≤t≤T                               (4.2) 

= 0       otherwise.                        

Where t

C D0

11 DJ  is the Caputo fractional derivative 

as described in (2.2.9) and  
1D

dt

d
. 

To solve the initial value problem of fractional order 

differential equation (4.2) we apply the Laplace transform 

method. So taking Laplace transform of the equation (4.2),                  

we have,                   L{ t

C D0 q(t)}= -DL{1} 

                                )0()( 10 qssqs  = -
s

D
 ,           

)(sq being Laplace transform of q(t). 

                               )(sqs = Q
1s

s

D
 

                               )(sq = 
1s

D

s

Q
 

Taking Laplace inversion of above equation we have, 

                            q(t) = 
)1(

)}({1 Dt
QsqL                                                                 

So the inventory level at any time t based on α ordered 

decreasing rate of demand                                                                   

is )(tq = 
)1(

DT
Q     for 0≤t≤T .                (4.3)             

On using the boundary condition q(T)=0 implies that  

Q=
)1(

DT
                               (4.4)     [for =1 in (4.3) 

and (4.4) gives results as in (3.2) and (3.3)]. 

Generalized Holding Cost: 

Now the Holding cost of fractional order, say  i.e. 

)(THC = )(1 tqDC                         (4.1.1) 

Case1:   For =1 and =1, Holding cost is 

HC1,1(T)= )(1

1 tqDC =
2

1QTC
=

2

2

1DTC
,  same as in (3.4). 

Case2:  For =1, Holding cost is 

)(,1 THC =

T

dttqC
0

1 )(  

= dt
Dt

QC

T

]
)1(

[
0

1  

=
)1()1(

[
1

1

DT
QTC ]   

                                                            

=
)1()1(

)1(.
[1

QT
QTC ]            (using (4.4)) 

= QT
C

1

1
                                                         (4.1.2) 

Case3: For =1, Holding cost of order   is       

)(,1 THC = )(1 tqDC =

t

dxxqxtC
0

1

1 )()(
)(

1
 

=

t

dxDxQxtC
0

1

1 )()(
)(

1
 

= d
Dt

Cd
Qt

C

1

0

1
1

1

1

0

1

1 )1(
)(

)1(
)(

         

(putting x = t ) 

   = )2,(
)(

]
)(

)1(
[

)(

1

1

1

01 B
Dt

C
Qt

C t               

where B(m,n) is the well known beta function. 

=
)2()1(

1

11

Dt
C

Qt
C  

For t=T,  )(,1 THC = ]
)2(

1

)1(

1
[1QTC           

( using Q=DT for =1)            (4.1.3) 

= ]
)2(

1

)1(

1
[1

1DTC                        (4.1.4) 

[ The above fractional order integration can also be done by 

using Laplace transform method. We have to find the 

fractional order integral   

)(tqD =

t

xqxt
0

1 )()(
)(

1
, where q(x)=Q-Dx. 

For this now 

L{ )(tqD }=L{ )( DtQD }=
21 s

D

s

Q
                       

(4.1.5) 

          (Since it is known that 

L{
11

)1()1(
}{)}(

ss
stLstD  )                 

Therefore from (4.1.5), we have 

)(tqD = }{
21

1

s

D

s

Q
L =

)2()1(

1DtQt
] 
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Case 4:  For any  and   , Holding cost is )(, THC  

= )(1 tqDC , 

Where, )(tq =Q
)1(

Dt
   

Now   )(tqD =

t

xqxt
0

1 )()(
)(

1
 

Then L{ )(tqD }=L{
)1(

(
Dt

QD )} 

=
11 s

D
s

s

Q
  =

11 s

D

s

Q
                     

Therefore   

)(tqD =

)1()1(
}{

11

1 DtQt

s

D

s

Q
L       

                   Then for t=T, HCα,β(T) 

= )(1 tqDC = ]
)1()1(

[1

DTQT
C  

  = ]
)1(

)1(

)1(

1
[1QTC      [using (4.3)]            

= ]
)1(

)1(

)1(

1
[

)1(
1

DT
C                  

=
)1(

1

)1()1(

1
1DTC        (4.1.6)               

Generalized Total Average Cost: 

Total cost(TC)=Purchasing cost(PC)+Holding cost(HC)+Set 

up cost(SC). 

Total Average Cost (TAC)=
T

1
[Total Cost(TC)] 

Case1: For α=1 and β=1, the model is being as our classical 

EOQ problem where the optimum Total Average Cost 

TAC*1,1(T*) is given in  (3.9). 

Case2:  For any  >0 and =1, 

Here, )(1, TTC =UQ+ QT
C

1

1
+ 3C  

Then total average cost )(1, TTAC  =
T

1
[ 

UQ+ QT
C

1

1
+ 3C ] 

                                                                  

= ]
)2()1(

[
1

3

11 CDT
CUDT

T
     

                                                                 

=
T

C
DT

CUDT 31

1

)2()1(
                    (4.2.1)                                                                                        

Here  generalized  EOQ model is, 

Min )(1, TTAC   =
T

C
BTAT 1

 ,               (4.2.2) 

                  subject to T ≥0, 

where  A=
)1(

UD
 , B=

)2(

1 DC
 and C= 3C .  

(4.2.2) can be taken as a primal geometric programming 

problem with degree of difficulty (DD) =1. 

Dual form of (4.2.2) 

Max d(w) =

321

321

www

w

C

w

B

w

A
,                   (4.2.3) 

              Subject to,   1w + 2w + 3w =1,                       

(normalized condition)                            (4.2.4) 

                                  1w ( -1)+ 2w - 3w =0,              

(orthogonal condition)                           (4.2.5) 

                                 w1, w2, w3 ≥0.                                 

             Primal-dual relations are,  

A
1T = 1w d(w)                                                       (4.2.6)                       

BT = 2w d(w)                                                          (4.2.7) 

T

C
= 3w d(w)                                                              (4.2.8) 

             From (4.2.6) and (4.2.7), we have, 

2

1

w

w

BT

A
 T 

=

1

2

w

w

B

A
                                (4.2.9) 

                     From (4.2.7) and (4.2.8), we have, 

3

21

w

w
T

C

B
                            

3

2

1

1

2

w

w

Bw

Aw

C

B
                     

032

1

1 www
A

B

A

C
                       (4.2.10) 

Now we have to solve for 1w , 2w , 3w  from three system of 

non linear equations (4.2.4), (4.2.5) and (4.2.10) and 

obtained the solutions as 
*

1w ,
*

2w  and 
*

3w     and then 

from the relation (4.2.9), we will able to obtain 
*T  for 

which )(1, TTAC  is minimum. i.e we will able to obtain 

)(*

1, TTAC  as the minimum of )(1, TTAC  in (4.2.2) and 

Q*(T) in (4.4). 

Case3:  For =1 and for any , we have the Holding cost , 

                                      )(,1 THC  = 

]
)2(

1

)1(

1
[1

1DTC                        

[from(4.1.4)] 

                       Then Total cost 

(TC)=UQ+ ]
)2(

1

)1(

1
[1

1DTC + 3C  
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         Total average cost )(,1 TTAC =
T

1
{ 

UQ+ ]
)2(

1

)1(

1
[1

1DTC + 3C } 

                                                            

=UD+
T

C
TDC 3

1
)2(

1

)1(

1
     (4.2.11) 

[since for =1, we know that Q=DT.] 

                           =A+BT +
T

C
  (say) 

                             Where, A=UD, 

B=
)2(

1

)1(

1
1DC , and C= 3C .        (4.2.12) 

To minimize )(,1 TTAC  , we again apply geometric 

programming method.  

Let us suppose that M(T)= BT +
T

C
                    (4.2.13) 

Then the degree of difficulty(DD) in G.P.P(4.2.13)=2-1-1=0 

                                Max d(w)=

21

21

ww

w

C

w

B
  

Subject to, 1w + 2w =1 (normalized condition)        (4.2.14) 

1w - 2w =0 (orthogonal condition)                         (4.2.15) 

                                                   w1, w2 ≥ 0. 

Then solving for 1w and 2w from the above equation (4.2.14) 

and (4.2.15), we get 

1w =
1

1
 and  2w =

1
                                  (4.2.16) 

Again from the primal-dual relations  BT = 1w d(w)  and 

T

C
= 2w d(w) , we get 

1

2

11

w

w
T

C

B

 

1

1

1

B

C
T

B

C
T                       (4.2.17) 

                              we get, Max 

d(w)=

11

1

11

1

CB
     

                                                                      

=
1

1

1

11

1
1

)1(CB  

= )1(111

1

CB  

                                                Min M(T)= 

)1(111

1

CB  

                     Min )(,1 TTAC = 

)(*

,1 TTAC =A+ )1(111

1

CB            (4.2.18) 

Where A, B, C are given in (4.2.12). 

Case4:  For any α >0 and any  >0, we have the Holding 

cost as 

                  )(, THC  = 

)1(

1

)1()1(

1
1DTC                    

[from(4.1.6)] 

         Then Total cost )(, TTC  

=UQ+
)1(

1

)1()1(

1
1DTC +

3C                      Total average cost is given by 

                )(, TTAC =
T

1
{ 

UQ+
)1(

1

)1()1(

1
1DTC +

3C }                  

                   

=
T

C
TDCT

UD 31

1

1

)1(

1

)1()1(

1

)1(
   (4.2.19) 

                                [since we have from (4.4), 

Q=
)1(

DT
] 

                             =A
1T  +B

T

C
T 1

       (say) 

Where A=
)1(

UD
, 

B=
)1(

1

)1()1(

1
1DC  and 

C= 3C . 

Now to minimize )(, TTAC , we apply geometric 

programming method, and the degree of difficulty(DD) 

is=3-1-1=1.  

Max d(w) = 

321

321

www

w

C

w

B

w

A
 

Subject to, 1w + 2w + 3w =1 (normalized condition)  (4.2.20) 

( -1) 1w +( + -1) 2w - 3w =0(orthogonal condition) (4.2.21)  

w1, w2, w3 ≥ 0. 

Again the primal-dual variable relations are given by 

A
1T = 1w d(w)                                                       (4.2.22) 
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B
1T = 2w d(w)                                               (4.2.23) 

T

C
= 3w d(w)                                                          (4.2.24) 

From (4.2.22) and (4.2.23) we have, 

1

2

w

w

A

BT
 

1

1

2

Bw

Aw
T                                                  (4.2.25) 

Again from (4.2.22) and (4.2.24) we have, 

3

1

w

w
T

C

A
 

3

1

1

2

w

w

Bw

Aw

C

A
 

3

1

1

2

Aw

Cw

Bw

Aw
 

0321 www
A

C

A

B
                (4.2.26) 

Now solving for 1w , 2w and 3w  from three system of non 

linear equations (4.2.20), (4.2.21) and (4.2.26) we get the 

solution as 
*

1w ,
*

2w ,
*

3w and hence we calculate Max d(w)  

i.e *)(*

, TTAC . Again using (4.2.25), we will able to find 

T* and hence Q*(T*) by using (4.4).  

Numerical example: 

A product has a demand of 5000 units per year. The cost of 

one procurement is Rs 20000 and the holding cost per unit is 

Rs 100 per year. The replacement is instantaneous and no 

shortages are allowed.  We shall now calculate for different 

values of α and β, 

(a). The economic lot size,( EOQ)    

(b). Optimal total average cost, 

(c). Optimal time period.          

Where the set up cost is Rs.10000. 

This is given in terms of some tables and figures.

 

Table-1: Optimum value of T*, )( **

1, TTAC  and 
*Q (T*)  for different vales  and β=1.0. 

 

 

  
A=

)1(

UD
, B=

)2(

1 DC
, 

C= 3C =10000. 

 

 

    T* 

   

 

)( **

1, TTAC  

 

  Q*(T*) 

 

0.1 A=105114000,   B=47779 19800 142778 14135 

0.2 A=108912000,   B=90760.4 4799.98 618094 29668.5 

0.3 A=111424000,   B=128566 2022.22 1.80209e+6 54663.6 

0.4 A=112706000,   B=161009 1050 4.33685e+6 91073.7 

0.5 A=112838000,   B=188063 600.007 9.2131e+6 138198 

0.6 A=111917000,   B=209845 355.554 1.77985e+7 189850 

0.7 A=110055000,   B=226583 208.164 3.16949e+7 230921 

0.8 A=107367000,   B=238594 112.501 5.21835e+7 234837 

0.9 A=103975000,   B=246258 46.913 7.8625e+7 165983 

1.0 A=100000000,   B=250000 0.2 1.001e+8 1000 

  

Above table shows optimal results of total average cost, time 

period and order quantity for different α. It is seen that as α 

increases T
*
decreases [Fig-2] and TAC*(T*) increases [Fig-

3] but Q*(T*) increases up to certain value of α and then 

decrease [Fig-4].

Table-2: Optimum values of T*, )( **

,1 TTAC & Q*(T*)  for different values β and α=1.0. 

 

 

      

A=UD, B= 

 
)2(

1

)1(

1
1DC

 
C=C3=10000 

 

 

         T* 

 

 

   )( **

,1 TTAC  

 

 

    Q*(T*) 

0.1 A=100000000,  B=4779 15.8709 100007000 79354.5 

0.2 A=100000000,  B= 90760.4 0.608454 100099000 3042.27 

0.3 A=100000000,  B= 128566 0.35403 100122000 1770.15 

0.4 A=100000000,  B= 161009 0.264367 100132000 1321.84 

0.5 A=100000000,  B= 188063 0.224466 100134000 1122.33 

0.6 A=100000000,  B= 209845 0.205338 100130000 1026.69 

0.7 A=100000000,  B= 226583 0.196755 100123000 983.775 

0.8 A=100000000,  B= 238594 0.1943 100116000 971.5 

0.9 A=100000000,  B= 246258 0.195782 100108000 978.91 

1.0 A=100000000,  B= 250000 0.2 100100000 1000 
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Above table shows optimal results of total average cost, time 

period and order quantity for different β when α is being 

fixed as 1.0. It is seen that as β increases T
*
decreases [Fig-5] 

and TAC*(T*) increases up to certain values of β and after 

then it decreases [Fig-6] but Q*(T*)  decreases [Fig-7] 

respectively. 

 

TABLE- 3,  For α=0.2 and any β Optimum value of T*,TAC*(T*),Q*(T*) 

 

   

 

A=

)1(

UD
 

 B=   

)1(

1

)1()1(

1
1DC  C= 3C  

    

 
    T* 

 

 
 TAC*(T*) 

 

 
  Q*(T*) 

0.1 A=108912000,     B=15288.2 0.3061442 e+14 0.001777024 2.71164e+6 

0.2 A=108912000,     B=29565.8 0.31727 82e +14 0.001955948 2.73109e+6 

0.3 A=108912000,      B=42584.8 0.7903284e+14 0.005619694 3.278e+6 

0.4 A=108912000,       B=54167.4 0.5234629e+15 0.07035799 4.78437e+6 

0.5 A=108912000,       B=64199 0.7001797e+16 1.132333 8.03692e+6 

0.6 A=108912000,      B=72624.7 0.1308728e+18 27.39773 1.44350e+7 

0.7 A=108912000,      B=79439.5 0.2608468e+19 1143.926 2.62618e+7 

0.8 A=108912000,      B=84680.8 0.30775252e+14 84680.8 2.71409e+6 

0.9 A=108912000,      B=88421.3 27376.76 276340.4 42026.6 

1.0 A=108912000,     B=90760.4 4800.080 618095.7 29688.6 

 

Above table shows optimal results of total average cost, time 

period and order quantity for different β and fixed α=0.2. It 

is seen that as β increases T
*
decreases and TAC*(T*) 

increases but Q*(T*) decreases.

 

TABLE- 4,  For α=0.4 and any β Optimum value of T*,TAC*(T*),Q*(T*) 

   
 

      

A=

)1(

UD
 

 B=   

)1(

1

)1()1(

1
1DC

 C=C3.

 

    
 

    T* 

 
 

 TAC*(T*) 

 
 

  Q*(T*) 

0.1 A=112706000,    B=28157.9 0.99e+20 0.0001162177 5.61269e+11 

0.2 A=112706000,    B=54167.1 0.99e+20 0.0006572407 5.61269e+11 

0.3 A=112706000,    B=77635.7 0.99e+20 0.07798352 5.61269e+11 

0.4 A=112706000,    B=98297 0.99e+20 9.849592 5.61269e+11 

0.5 A=112706000,    B=115999 0.99e+20 1161.157 5.61269e+11 

0.6 A=112706000,    B=130689 0.99e+20 130698 5.61269e+11 

0.7 A=112706000,    B=142402 178756.2 556786.8 710922 

0.8 A=112706000,    B=151244 15372.32 1386643 266448 

0.9 A=112706000,    B=157378 3211.487 2661012 142429 

1.0 A=112706000,   B=161009 1050.007 4336857 91073.9 

 

Above table shows optimal results of total average cost, time 

period and order quantity for different β and fixed α=0.4. It 

is seen that as β increases T
*
decreases and TAC*(T*) 

increases but Q*(T*) decreases.

 

TABLE- 5,  For α=0.6 and any β Optimum value of T*,TAC*(T*),Q*(T) 

   

 

   

A=

)1(

UD
 

 B=   

)1(

1

)1()1(

1
1DC

,

C= 3C  

    

 

    T* 

 

 

 TAC*(T*) 

 

 

  Q*(T*) 

0.1 A=111917000,    B=37929.4 0.99e+20 1.161722 5.56223e+15 

0.2 A=111917000,    B=72624.7 0.99e+20 8.400761 5.56223e+15 

0.3 A=111917000,    B=103639 0.99e+20 1038.556 5.56223e+15 

0.4 A=111917000,    B=130689 0.99e+20 130690.1 5.56223e+15 

0.5 A=111917000,    B=153637 8490250 946886.4 8.03934e+7 

0.6 A=111917000,    B=172474 154408.4 2821948 7262240 

0.7 A=111917000,    B=187298 13954.59 5740983 1716720 

0.8 A=111917000,    B=198291 2751.011 9421709 647981 

0.9 A=111917000,    B=205707 854.9325 13533090 321386 

1.0 A=111917000,    B=209845 355.5568 17798480 189851 
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Above table shows optimal results of total average cost, time 

period and order quantity for different β and fixed α=0.6. It 

is seen that as β increases T
*
decreases and TAC*(T*) 

increases but Q*(T*) decreases.

 

TABLE- 6,  For α=0.8 and any β Optimum value of T*,TAC*(T*),Q*(T*) 

   

 

 

A=
)1(

UD
 

 B=   

)1(

1

)1()1(

1
1DC C= 3C  

    

 

    T* 

 

 

 TAC*(T) 

 

 

  Q*(T) 

0.1 A=107367000,     B=44410.7 0.99e+20 11202.86 5.32537e+19 

0.2 A=107367000,     B=84680.8 0.99e+20 95439.10 5.32537e+19 

0.3 A=107367000,     B=120376 0.6884457e+11 2189869 2.51268e+12 

0.4 A=107367000,     B=151244 0.1342708e+8 8059433 2.70537e+9 

0.5 A=107367000,     B=177199 163168.6 0.1622528e+8 7.94238e+7 

0.6 A=107367000,     B=198291 11330 0.2489523e+8 9.40211e+6 

0.7 A=107367000,     B=214687 1937.859 0.3307765e+8 2.28928e+6 

0.8 A=107367000,      B=226643 559.7714 0.4038387e+8 847715 

0.9 A=107367000,       B=234487 224.8403 0.4673492e+8 408640 

1.0 A=107367000,       B=238594 112.5009 0.5218568e+8 234837 

  

Above table shows optimal results of total average cost, time 

period and order quantity for different β and fixed α=0.8. It 

is seen that as β increases T
*
decreases and TAC*(T*) 

increases but Q*(T*) decreases.

 

 

Figure-2:  Rough sketch of α versus T* graph for fixed β=1.0 

We see from the above figure that for fixed β=1, as α 

increases T* decreases and this decreasing rate is very high 

when α varies between 0.1 to 0.4. The decreasing rate of T* 

becomes slow after 0.4.  

 

Figure-3:  Rough sketch of α versus TAC*α,1(T*) graph for fixed β=1.0 

We see from the above figure that as α increases, 

TAC*α,1(T) increases and this increasing rate very high 

when α ≥ 0.5. 
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Figure-4:  Rough sketch of α versus Q*(T*) graph for fixed β=1.0 

The above figure shows that as α increase up to 0.8, Q*(T*) 

increases, but when α>0.8, Q*(T*) decreases very highly.                                                    

 

Figure-5:  Rough sketch of β versus T* graph for fixed α=1.0 

We see from the above figure that as β increases , T* 

decreases. The decreasing rate is very high when β is in 

between 0.1 and 0.5. 

 

Figure-6:  Rough sketch of β versus TAC*1,β(T*)  graph for fixed α=1.0 

We see from the above figure that as β increases up to 0.5, 

TAC*1,β(T*) increases very highly  and when β>0.5, 

TAC*1,β(T*) decrease slowly. 

 

Figure-7:  Rough sketch of β versus Q*(T*) graph for fixed α=1.0 

The above figure shows that that as β increases, Q*( T*) 

decreases. The decreasing rate is very high when β is in 

between 0.1 and 0.5. 

CONCLUSION 

Fractional Calculus is the generalization of the ordinary 

calculus. In this feature article, we have briefly shown some 

of the role and application of the fractional in our well 

known classical EOQ model of inventory control in 

operation research so it can be made more general. It is 

shown that classical holding cost (HC) total average 

cost(TAC) are the particular case of our generalized holding 

cost and total average cost which is based on the fractional 

order integration and differentiation. 

 

Although the fractional order calculus is a 300-years old 

topic, only very rare application is studied in any operation 

research model. Still, ordinary calculus is much more 

familiar and more preferred, may be because its applications 

are more apparent. However it is expected that this new 

branch of applied mathematics will able to fill the gap 

between ordinary calculus and fractional order calculus. 

Fractional calculus has the potentiality of useful application 

in any operation research model. In future it would be a very 

useful tool to describe any operation research model more 

precisely.  
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