
Volume 3, No. 5, May 2012

Journal of Global Research in Computer Science

REVIEW ARTICLE

Available Online at www.jgrcs.info

© JGRCS 2010, All Rights Reserved 22

SOME OBSERVATION ON MAINTAINABILITY METRICS AND MODELS FOR

WEB BASED SOFTWARE SYSTEM

Anil Kumar Malviya1, Laxmi Shanker Maurya*2
1Associate Professor,

Department of Computer Science and Engineering,
Kamla Nehru Institute of Technology, Sultanpur

anilkmalviya@yahoo.com
2Research Scholar,

Mewar University,

lsmaurya@yahoo.com

Abstract: Many web applications have evolved from simple HTML pages to complex applications that have a high maintenance cost. This high
maintenance cost is due to the heterogeneity of web applications, to fast Internet evolution and the fast-moving market which imposes short
development cycles and frequent modifications. In order to control the maintenance cost and to enhance maintainability, quantitative metrics for

predicting web applications maintainability must be used. To estimate the maintenance cost and maintainability of software, many software
metrics and models have been proposed in the literature. In most of these models researchers have focused on conventional software systems.
Very few models are there for web based applications. In this paper we had tried to propose three primary level mathematical models of
maintainability assessment for web based applications based on the studies conducted by Emad et al. [3], Heung et al. [2] and Silvia et al. [1].

Keywords: Web applications, metrics, maintainability, quantitative, model, observation.

 INTRODUCTION

The World Wide Web has become a major delivery platform

for a variety of complex and sophisticated enterprise

applications in several domains. In addition to their inherent

multifaceted functionality, these web applications exhibit

complex behavior and place some unique demands on their

usability, performance, security and ability to grow and

evolve. However, a vast majority of these applications

continue to be developed in an ad-hoc way, contributing to

problems of usability, maintainability, quality and
reliability.

While web development can benefit from established

practices from other related disciplines, it has certain

distinguishing characteristics that demand special

considerations. In the recent years, there have been some

developments towards addressing these problems and

requirements. As an emerging discipline, web engineering
actively promotes systematic, disciplined and quantifiable

approaches towards successful development of high-quality,

ubiquitously usable web-based systems and applications. In

particular, web engineering focuses on the methodologies,

techniques and tools that are the foundation of web

application development and which support their design,

development, evolution, and evaluation. Web application

development has certain characteristics that make it different

from traditional software, information system, or computer

application development. Web engineering is

multidisciplinary and encompasses contributions from

diverse areas: systems analysis and design, software

engineering, hypermedia/hypertext engineering,

requirements engineering, human-computer interaction, user

interface, information engineering, information indexing and

retrieval, testing, modeling and simulation, project

management, and graphic design and presentation. Web

engineering is neither a clone, nor a subset of software

engineering, although both involve programming and
software development. While web Engineering uses

software engineering principles, it encompasses new

approaches, methodologies, tools, techniques, and

guidelines to meet the unique requirements of web-based

applications.

 Maintainability

The maintainability is one of the critical aspects of a WA
(Web Application): WAs have to be modified and evolve in

a very fast way, then those features affecting it should be

defined, identified and evaluated in order to improve/reduce

the ones that have a positive/negative impact on the

maintainability both during the development and

maintenance process of a WA. Unfortunately, there are very

few works in the literature addressing the problem of

assessing the WA Maintainability.

Definition 1:-Maintainability is most commonly referred to

as “the ease in which a system (for instance, a website or

web application) can be modified or extended” (via Jeremy

D. Miller).

Definition 2:- The ease with which repair may be made to

the software as indicated by the following sub attributes:

analyzability, changeability, stability and testability. (ISO

9126)

• Analyzability: how easy or difficult is it to diagnose the

system for deficiencies or to identify the parts that need to

be modified?

Laxmi Shanker Maurya et al, Journal of Global Research in Computer Science, 3 (5), May 2012, 22-29

© JGRCS 2010, All Rights Reserved 23

• Changeability: how easy or difficult is it to make

adaptations to the system?

• Stability: how easy or difficult is it to keep the system in a

consistent state during modification?

• Testability: how easy or difficult is it to test the system

after modification?

 Importance of maintainability

It has been measured that in the maintenance phase software

professionals spend at least half of their time analyzing
software to understand it [5]. The cost of software

maintenance accounts for a large portion of the overall cost

of a software system. Thus malfunctions of a critical

software system can cause serious damages. For example, a

problem in the Amazon.com web site in 1998 put the site

down for several hours which cost the company an

estimated $400,000. Also the relationship between the

company and its customers can be greatly affected by such

down time.

Quantitative metrics and models for predicting web

applications’ maintainability must be used to control the

maintenance cost. The maintainability metrics and models
can be useful in the following ways. First, predicting the

maintenance and cost of maintenance tasks which helps in

providing accurate estimates that can help in allocating the

right project resources to maintenance tasks [9]. Second,

comparing design documents which can help in choosing

between different designs based on the maintainability of

the design. Third, identifying the risky components of a

software. Since some studies show that most faults occur

on only few components of a software system. Fourth,

establishing design and programming guidelines for

software components. This can be done by establishing
values that are acceptable or unacceptable and take actions

on the components with unacceptable values. This means

providing a threshold of software product metrics to provide

early warnings of the system [10]. Fifth, making system

level prediction where the maintainability of all components

can be predicted by aggregating maintainability of single

components. This can be used to predict the effort it will

take to develop the whole software system [10].

The rest of the paper is organized as follows. Section 2

introduces web based systems. Section 3 demonstrates

software metrics (both direct and indirect) along with

importance of metrics in web application development.

Section 4 gives an overview of related works in web

application maintainability metrics and models. Section 5

describes certain observations on web application

maintainability metrics and its relationship with

maintainability and three proposed models by the authors

for web application maintainability assessment. Section 6
focuses on results and discussion. Finally, section 7

provides our conclusions and future works.

WEB BASED SYSTEMS

A web application is an application that is accessed over a
network such as the Internet or an intranet. The term may

also mean a computer software application that is hosted in

a browser-controlled environment (e.g. a Java applet) or

coded in a browser-supported language (such as JavaScript,

combined with a browser-rendered markup language like

HTML) and reliant on a common web browser to render the

application executable.

Web applications are popular due to the ubiquity of web
browsers, and the convenience of using a web browser as a

client, sometimes called a thin client. The ability to update

and maintain web applications without distributing and

installing software on potentially thousands of client

computers is a key reason for their popularity, as is the

inherent support for cross-platform compatibility. Common

web applications include webmail, online retail sales, online

auctions, wikis and many other functions.

SOFTWARE METRICS

IEEE Standard 1061 [8] lays out a methodology for

developing metrics for software quality attributes. The

standard defines an attribute as "a measurable physical or

abstract property of an entity." A quality factor is a type of

attribute, "a management-oriented attribute of software that

contributes to its quality." A metric is a measurement
function, and a software quality metric is "a function whose

inputs are software data and whose output is a single

numerical value that can be interpreted as the degree to

which software possesses a given attribute that affects its

quality." To develop a set of metrics for a project, one

creates a list of quality factors that are important for it.

 Direct and indirect metrics

The IEEE Standard 1061 answer lies in the use of direct

metrics. A direct metric is "a metric that does not depend
upon a measure of any other attribute. Direct metrics are

important under Standard 1061; because a direct metric is

presumed valid and other metrics are validated in terms of it

("Use only validated metrics (i.e. either direct metrics or

metrics validated with respect to direct metrics)"). "Direct"

measurement is often used synonymously with

fundamental" measurement [9] and contrasted with indirect

or derived measurement [4]. The contrast between direct

measurement and indirect, or derived measurement, is

between a (direct) metric function whose domain is only one

variable and a (derived) function whose domain is an n-

tuple. For example, density is a function of mass and
volume. Some common derived metrics in software

engineering are:

• Programmer productivity (code size/ programming time)

• Module defect density (bugs / module size)

• Requirements stability (number of initial requirements

/total number of requirements)

• System spoilage (effort spent fixing faults / total project

effort)\

Four examples of direct measurement provided by Fenton &

Pfleeger:
• Length of source code (measured by lines of code);

• Duration of testing process (measured by elapsed time in

 hours);

• Number of defects discovered during the testing process

 (measured by counting defects);

Laxmi Shanker Maurya et al, Journal of Global Research in Computer Science, 3 (5), May 2012, 22-29

© JGRCS 2010, All Rights Reserved 24

• Time a programmer spends on a project (measured by

months

 worked).

Importance of metrics in web application development

Many World Wide Web applications incorporate important
business assets and offer a convenient way for businesses to

promote their services through the Internet. A large

proportion of these web applications have evolved from

simple HTML pages to complex applications which have

high maintenance cost. This is due to the laws of software

evolution [11] and to some special characteristics of web

applications. Two software evolution laws [11] that affect

the evolution of web applications are:

• First Law-Continuing change: a program used in the real

world must change or eventually it will become less

useful in the changing world.

• Second Law-Growing complexity: as a program evolves it

becomes more complex and extra resources are needed to

preserve and simplify its structure.

In addition to this, web applications have some

characteristics that make their maintenance costly:

heterogeneity, speed of evolution, and dynamic code

generation. In order to control the maintenance cost of web

applications, quantitative metrics for predicting web

applications maintainability must be used. Web applications

are different from traditional software systems, because they

have special features such as hypertext structure, dynamic
code generation and heterogeneity that can not be captured

by traditional and object-oriented metrics, hence metrics for

traditional systems can not be applied to web applications.

Metrics or measures play fundamental role in overall

assessment of the quality of the software systems in general

and web based systems in particular. Henceforth,

specialized metrics should be investigated to assess the

quality characteristics of the web applications particularly

the maintainability.

RELATED WORKS

Almost no studies have been made towards establishing a

sound definition and validation of metrics for early

measuring the structural complexity of web applications.

For instance, Dhyani et al. present a survey that classifies a

wide set of web metrics [5]. Some of them were proposed to

measure web graph properties1, addressing the structural
complexity of web applications. However, the majority of

these metrics have not been accepted in practice because

they were not built using a clearly defined process for

defining software measures. There are a myriad of design

recommendations and guidelines for building usable Web

sites. These guidelines address a broad range of Web site

features, from the amount of content on a page to the

breadth and depth of pages in the site. However, there is

little consistency and overlap among them making it

difficult to know which guidelines to adhere to.

Furthermore, there is a wide gap between a heuristic and its
operationalization in metrics.

One of the main concerns of system stakeholders is to

increase the maintainability of the software system.

Maintainability can be defined as: The ease with which a

software system or component can be modified to correct

faults, improve performance or other attributes, or adapt to a

changed environment [3]. Maintainability can be measured
by measuring some of the sub-characteristics of

maintainability such as understandability, analyzability,

modifiability and testability. Guiseppe et al. [6] measured

maintainability by measuring both modifiability and

understandability. Coleman quantifies maintainability via its

Maintainability Index. The Maintainability Index is

measured as a function of directly measurable attributes A1

through An as shown in Equation 1:

M = f (A1, A2... An) (1)

The measure (M) is called a Maintainability Index which

can differ depending on the attributes being used in the

measurement. Fioravanti et al [8] used effort for measuring

maintainability. Most of the studies related to

maintainability measurements have looked at structured and

object-oriented systems. Little work has been done in this
regard with web applications. The Web Application

Maintainability Model (WAMM) [9] used source code

metrics measuring the maintainability using the

Maintainability Index. In WAMM new metrics were

defined, but not validated empirically or theoretically. There

is also a need to prove how practical WAMM will be in an

industrial environment. Two studies use regression analysis

to define and validate metrics and models for web

applications: in [10] design and authoring effort were the

dependent variables. The independent variables were based

on source code metrics. There is still a need for more
empirical studies to validate these newly defined metrics in

order to make general conclusions. In [11] design metrics

were introduced based on W2000 which is a UML like

language. In the study the dependent variables were

variations of design effort. The independent variables were

measured from the presentation, navigational and

information models. Some data for the presentation model

was discarded in the study due to lack of participation from

all subjects. It is not known how useful this approach would

be, since it is not known if the W2000 language is used

outside the educational environment and if it will become

popular in industrial environments.

OBSERVATIONS

Observation1

There are several design quality attributes defined in the

literature that have an effect on maintainability such as

coupling, cohesion and complexity. Emad et al. [3] has

defined metrics for the following design attributes: size,

complexity, coupling and reusability. The metrics are shown

below.

Table1: Web Application Design Metrics

Laxmi Shanker Maurya et al, Journal of Global Research in Computer Science, 3 (5), May 2012, 22-29

© JGRCS 2010, All Rights Reserved 25

Metric Type Description

Size Total number of server pages (NServerP)

Total number of client pages (NClientP)

Total number of web pages (NWebP)=(NServerP + NClientP)

Total number of form pages (NFormP)

Total number of form elements (NFormE)

Total number of client components (style sheet and JavaScript components)(NClientC)

Structural Complexity Total number of link relationships (NLinkR)

Total number of Submit relationships (NSubmitR)

Total number of builds relationships (NbuildsR)

Total number of forward relationships(NForwardR)

Total number of include relationships(NIncludeR)

Total number of use tag relationships(NUseTagR)

Control Coupling Number of relationships over number of web pages: WebControlCoupling = (NLinkR +

NSubmitR + NbuildsR + NForwardR + NIncludeR + NUseTagR)/NWebP)

Data Coupling Number of data exchanged over number of server pages: WebDataCoupling = (NFormE /
NServerP)

Reusability Number of include relationships over number of web pages: WebReusability = (NIncludeR /

NWebP)

This study aims to answer the following question: Is there a

relationship between the metrics identified in Table1 and

maintainability? Since the study is explorative in nature, it

measures maintainability in a subjective manner.

The maintainability is measured by getting input from the

developers on the modifiability (M) maintainability sub
characteristic. The modifiability is based on how easy it is to

make changes to the web application. The following

hypotheses are investigated: H1: the lower the size metrics

of the class diagram, the higher the modifiability. H2: the

lower the structural complexity metrics of the class diagram,

the higher the modifiability. H3: the lower the coupling

metrics of the class diagram, the higher the modifiability.

H4: the lower the reusability metrics of the class diagram,

the lower the modifiability. In the result Emad et al. [3] has

found that all the four hypotheses were accepted. Now, we

can interpret these findings in the form of following

mathematical equations. Such as:

M --- (1)

M --- (2)

M --- (3)

M Reusability --- (4)

Combining above 4 equations we get the following equation

M --- (5)

Or, M = k --- (6)

Equation 6 may be assumed as a maintainability assessment

model based on the used metrics.

The value of constant k may be calculated on the basis of

various environmental and human factors.

Observation 2
For estimating maintenance effort, Heung et al. [2] choose

four object-oriented metrics: RFC [3], LCOM [3], DAC [9],

and LOC. Software metric can be largely classified into the

following three categories: cohesion, coupling, and size. In

the experiment, one representative metric for each category

is selected. More specifically, C&K’s LCOM [3] is used for

cohesion measuring metrics, and C&K’s RFC [3] and Li and

Henry’s DAC [9] are used for coupling measuring metrics.

Finally, LOC is used for size measuring metrics. In addition,

LCOM, RFC, DAC and LOC have been used in empirical

studies for estimating various quality attributes such as

maintainability, fault-proneness and productivity. The used
metrics can be summarized as follows:

 LCOM(Lack of Cohesion in Methods), one of C& K

metrics suite, is a representative metric for measuring

cohesiveness of a class and have been widely used for

several experiments. LCOM is defined as follows:

LCOM = |P|-|Q|, if |P| > |Q|. Otherwise, LCOM = 0. |Q|

denotes the number of method pairs which refer to

instance variables commonly used in a class. |P| denotes

the number of method pairs that have no shared

instance variables. As can be seen in the definition,
LCOM is a reverse metric for cohesion, in other words,

the higher LCOM is, the worse the cohesion is.

 RFC(Response for Classes) denotes the total number

of methods which are responding to some class objects

or some classes invoke to. Accordingly, RFC is a

coupling metric representing dependency relationship

Laxmi Shanker Maurya et al, Journal of Global Research in Computer Science, 3 (5), May 2012, 22-29

© JGRCS 2010, All Rights Reserved 26

between classes. In general, the higher a coupling is, the

more the maintenance activity costs.

 DAC(Data Abstraction Coupling) means

dependencies between classes on the basis of data

abstraction. More specifically, it denotes the number of

classes related to a class with aggregations.

 LOC(Line of Code) is used to estimate a system size
based on the number of statement lines in a program. It

regards all statements except blank and comments as

part of program size. Although LOC gives a big

difference in developing similar software according to

programming languages, or programmer’s coding

styles, it is traditionally used because of its simplicity

and ease of intuitive understanding.

The observed relationship between Maintenance Effort (Me)

and used object-oriented metrics by Heung et al. [2] may be

interpreted in the form of mathematical equations as

follows:-

Me RFC --- (1)

Me DAC --- (2)

Me LCOM --- (3)

Me LOC --- (4)

We also know that there is inverse relation between Me and
Maintainability (M). So, this relationship can be interpreted

as:-

Me ---(5)

and hence, the relationship between Maintainability(M) and

the object-oriented metrics presented in above equations

may be interpreted as follows:-

M ---(6)

M ---(7)

M ---(8)

M ---(9)

Combining equations 6, 7, 8 and 9 we get the following

equation

M ---(10)

Or, M = k ---(11)

Now, Equation 11 may be used as another maintainability

model based on the used metrics and the value of the

constant k may be estimated based on various environmental

and personnel factors.

Observation 3

While modeling the navigational structure of a web

application, several aspects should be taken into account

such as the underlying structure of navigation (i.e., how the

navigation space is organized); which objects will be

navigated, as well as what are the effects of a navigation

action. According to the OOWS (Object-Oriented Web

Solutions) approach, the navigation space is organized by

defining a unique navigational map for each agent [7]. Silvia

et al. [1] used following metrics for web application

maintainability assessment. Table 2 shows some metrics for

navigational maps based on the morphological
characteristics of the navigational model. NNC and NNL

metrics can be used as indicators of the navigational model

size. Also, these metrics can be used as an indicator of

density of a navigational map (DNM). This can be

calculated as:

DNM = NNL/NNC (1)

The Depth of a Navigational Map (DNM) is just the

distance of a root navigational context to a leaf context. It

indicates the ease with which the target navigational context
can be reached and the likely importance of its content. The

interpretation is: the larger the distance of a leaf navigational

context from the root, the harder it is for the agent to reach

this context and potentially the less important this context

will be in the map. We can measure the maximum,

minimum and average depth of a navigational map for each

agent. The Breadth of a Navigational Map (BNM) is the

number of exploration navigational contexts (i.e. at the first

level of contexts). The interpretation is: the larger the

number of exploration navigational contexts, the harder it is

for the agent to understand the web application (too many
options at once). Even web applications with a non-deep

hierarchical structure and a reduced number of navigational

contexts may have a complex navigation structure.

Table 2.Some Metrics for Navigational Maps

Metric Name Metric Definition

Number of Navigational The total number of navigational contexts in a

Contexts (NNC) navigational map.

Number of Navigational The total number of navigational Links (NNL)

Links (NNL) in a navigational map.

Density of a Navigational An indicator of density of a navigational map.

Map (DeNM)

Depth of a Navigational The longest distance of a root navigational context

Laxmi Shanker Maurya et al, Journal of Global Research in Computer Science, 3 (5), May 2012, 22-29

© JGRCS 2010, All Rights Reserved 27

Map (DNM) to a leaf context.

Breadth of a Navigational The total number of exploration

Map (BNM) navigational contexts.

Minimum Path The minimum amount of navigational links that are

Between Navigational necessary to transverse from a source to a target

Contexts (MPBNC) navigational context.

Number of Path Between The amount of alternative paths in order to reach

Navigational Contexts two contexts within a navigational map.

(NPBNC)

Compactness (Cp) The degree of interconnectivity of a navigational map.

The Compactness metric (Cp) represents the edge-to-node

ratio attribute. It refers to the degree of interconnection

among nodes pertaining to a hypermedia graph. Applying

this metric to navigational maps, the degree of

interconnectivity of navigational contexts is obtained. For

example, when there are few links in a navigational map,
navigational contexts could be difficult to reach by

following links. In addition, users may become disoriented

because they need to go through many steps to get some

piece of information. Some parts of a navigational map may

not even be connected by links at all (known as orphan or

dead-end nodes).

The interpretation for this metric is: high compactness

means that each navigational context can easily reach any

other node in the map (this may indicate a highly connected

map which can lead to disorientation). Low compactness

may indicate an insufficient number of links, which may

mean that parts of a map are disconnected. Table 3 shows

some metrics for Navigational Contexts. Traditionally, one

commonly used metric is the fan-in / fan-out metric [8],
which is based on the idea of coupling. The interpretation is

that the larger the number of couples, the greater the degree

of interdependence and difficulty of maintenance, and the

lower the potential for reuse.

Table 3. Some Metrics for Navigational Context.

Metric Name Metric Definition

Fan-In of a Navigational This counts the number of invocations a

Context (FINC) navigational context calls.

Fan-Out of a Navigational This counts the number of navigational links that

Context (FONC) call a navigational context.

Number of Navigational The total number of classes

Classes (NNCl) within a navigational context.

Number of Attributes (NA) The total number of attributes of all classes
 in a navigational context.

Number of Methods (NM) The total number of methods of all classes

 in a navigational context.

His presented metrics represent quantitative measures of

navigational properties. For instance these metrics permit a

structural analysis, and reveal potential navigational problems

such as unnecessary circular (link) paths and dead-end

nodesT.
The relationships identified by Silvia et al. [1] in their study

between size and structural complexity and maintenance

time(Tm) and maintainability(M) may be denoted

mathematically in the form of following equations:-

Tm size ---(1)

and

Tm structural complexity ---(2)

Combining equations 1 and 2 we get

Tm size structural complexity ---(3)

Or, Tm = k(size) (structural complexity) ---(4)

The value of the constant k may be evaluated on the basis of
various environmental and personal factors.

Further we know that there is inverse relationship between Tm

and M and hence the above equations (1), (2), (3) and (4)

may be represented as follows:-

M ---(5)

And

Laxmi Shanker Maurya et al, Journal of Global Research in Computer Science, 3 (5), May 2012, 22-29

© JGRCS 2010, All Rights Reserved 28

M ---(6)

Combining equations 5 and 6 we get

M ---(7)

Or, M = k ---(8)

The metrics used in the study may lead another model for

maintainability assessment denoted by equation 8. The value

of the constant k may be calculated based on various

environmental and personal factors involved in the system.

 RESULTS AND DISCUSSION

In section 5 from observation 1, 2 and 3 respectively we get

the first, second and third maintainability assessment models

represented by equations (1), (2) and (3) as follows:-

M = k --- (1)

 M = k --- (2)

 M = k ---(3)

In first maintainability assessment model four design

attributes: size, structural complexity, coupling and

reusability has been used. In the second model four object

oriented metrics RFC, LCOM, DAC, and LOC has been

used. RFC is a coupling metric representing dependency

relationship between classes. LCOM is a reverse metric for
cohesion, in other words, the higher LCOM is, the worse the

cohesion is. DAC (Data Abstraction Coupling) means

dependencies between classes on the basis of data

abstraction. LOC is the lines of code. In the third model size

and structural complexity has been used as the metric.

The value of constant k in all the three models may be

estimated based on various personnel and environmental

factors involved in the process of web application

development.

CONCLUSION & FUTURE WORK

The cost of software maintenance accounts for a large

portion of the overall cost of a software system. Therefore,

we need to effectively manage software maintenance

activities. As in the conventional software systems, we can

apply measurement based approach to estimating and

predicting maintenance efforts. The maintainability of web

applications is a new research area that is becoming

important and interesting for researchers in software
engineering. Most research in this area is still exploratory

and needs further validation. Some metrics have been

defined for web applications, but there is still a need to

provide theoretical and empirical validation for these

metrics so that they can be accepted in the software

community. In Observation1 metrics proposed by Emad et

al. [3] for the following design attributes: coupling,

complexity, size, and reusability were used to introduce a

primary model for maintainability assessment which is

depicted in equation 6. In Observation2 four object-oriented

metrics have been proposed by Heung et al. [2] such as

LCOM, RFC, DAC and LOC for assessment of maintenance

effort. Using these metrics we have proposed another model

for the maintainability assessment which is depicted by

equation 11. In Observation3 eight metrics for Navigational

Maps and five metrics for Navigational Context has been

proposed by Silvia et al. [1]. Using these metrics we have

identified the third model for maintainability assessment

which is depicted by equation 8. One drawback of our work

is that there is no concrete clue for the evaluation of the
constant k . Our future work will try to focus on determining

the relevancy and extent of the factors which are affecting k

such that accurate estimation of it may be ensured. Future

work may also include comparative study of design and

code level maintainability metrics for web based

applications.

REFERENCES

[1] S. Abraho, N. Condori-Fernndez, L. Olsina, and O. Pastor.
Defining and validating metrics for navigational models. In
Proceedings of the 9th International SoftwareMetrics Symposium,
pages 200–210. IEEE Computer Society Press, 2003.

[2] H. Seok Chae, T. Yeon Kim, Woo-Sung Jung, Joon-Sang Lee.
Using Metrics for Estimating Maintainability of Web Applications:

An Empirical Study. In Proceedings of the 6th International
Conference on Computer and Information Science, pages 1053 -
1059. IEEE Computer Society Press, 2007.

[3] Emad Ghosheh, S. Black and J. Qaddour. Design metrics for
Web application maintainability measurement. IEEE/ACS
International Conference on Computer Systems and Applications,
Pages 778 – 784. IEEE Computer Society Press, 2008.

[4] Sanjeev Dhawan and R. Kumar. Analyzing performance of
Web based metrics for Evaluating reliability and maintainability of
hypermedia applications. 3rd International Conference on
Broadband Communications, Information Technology &
Biomedical Applications, Pages 376 - 383. IEEE Computer Society
Press, 2008.

[5] Cem Kaner, Walter P. Bond. Software Engineering Metrics:
What Do They Measure and How Do We Know? 10th
International software metrics symposium, Pages 1-12 . IEEE
Computer Society Press, 2004.

[6] Guiseppe Antonio Di Lucca, A. R. Fasolino, P. Tramontana
and C. A. Visaggio. Towards the definition of a maintainability

model for Web applications. In the proceedings of the Eighth
European Conference on Software Maintenance and Reengineering
(CSMR’04), Pages 279-287, IEEE Computer Society Press, 2004.

[7] E. Ghosheh, S. Black, and J. Qaddour. An industrial study
using UML design metrics for web applications. In Computer and
Information Science, volume 131 of Studies in Computational
Intelligence, chapter 20, pages 231–241. Springer-Verlag, 2008.

[8] F. Fioravanti and P. Nesi. Estimation and prediction metrics for
adaptive maintenance effort of object-oriented systems. IEEE
Transactions on Software Engineering, 27(12):1062– 1084, 2001.

[9] G. DiLucca, A. Fasolino, P. Tramontana, and C. Visaggio.
Towards the definition of a maintainability model for web
applications. In Proceeding of the 8th European Conference on
Software Maintenance and Reengineering, pages 279– 287. IEEE
Computer Society Press, 2004.

Laxmi Shanker Maurya et al, Journal of Global Research in Computer Science, 3 (5), May 2012, 22-29

© JGRCS 2010, All Rights Reserved 29

[10] E. Mendes, N. Mosley, and S. Counsell. Web metrics -
estimating design and authoring effort. IEEE Multimedia,
08(01):50–57, 2001.

[11] L. Baresi, S. Morasca, and P. Paolini. Estimating the design
effort of web applications. In Proceedings of the 9th International

Software Metrics Symposium, pages 62–72. IEEE Computer
Society Press, 2003.

SHORT BIODATA OF ALL THE AUTHORS

Anil Kumar Malviya is an Associate Professor in the

Department of Computer Science and Engineering, at

Kamla Nehru Institute of Technology, Sultanpur. He is PhD

in Computer Science from B. R. Ambedkar University,

Agra.

Laxmi Shanker Maurya is an Associate Professor in the

Department of Information Technology at Shri Ram Murti

Smarak College of Engineering and Technology, Bareilly.

He is B. Tech. in Computer Engineering from GBPUAT

Pantnagar, M. Tech. in Information Technology from

AAIDU Allahabad and MBA in HR from IGNOU New

Delhi.

