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Abstract: BER is presented for the end to end performance of dual-hop wireless communication systems employing 
transmit diversity with orthogonal space-time block codes (OSTBCs), where a non regenerative or regenerative relay is 
equipped with a single antenna operating over flat Rayleigh fading channels. The end-to-end performance of dual-hop 
transmission certainly depends on the nature and complexity of relays. In nonregenerative systems, relays just amplify and 
forward the incoming signal without any other sort of manipulation on the signal. On the other hand, regenerative systems 
use more complicated relays that decode the signal received through the first hop and retransmit it, after encoding 
appropriately, into the second hop. 

 
 More specifically, we provide probability density functions (PDF) and moment generating functions (MGF) for 

the end-to-end SNR of the dual-hop OSTBC transmissions and then present its BER performance over M-ary QAM and 
PSK modulations, respectively. Numerical investigation shows that the analytic BER provided in the paper makes an exact 
match with the simulation result in various multiple-antenna transmission scenarios. The result also shows how the number 
of antennas equipped at the source and destination affects the end-to-end performance. 
 

I. INTRODUCTION 
 
The end-to-end performance of dual-hop transmission certainly depends on the nature and complexity of relays. Two main 
categories used in classifying the relays are, namely, nonregenerative and regenerative   systems. In nonregenerative 
systems, relays just amplify and forward the incoming signal without any other sort of manipulation on the signal. On the 
other hand, regenerative systems use more complicated relays that decode the signal received through the first hop and 
retransmit it, after encoding appropriately, into the second hop. 
Transmit diversity realized by multiple transmit antennas is widely accepted as an important tool for combating the fade in 
wireless links. It naturally affects the end-to- end performance when employed at any part in the dual-hop transmission. The 
existing performance studies of the dual- hop transmission, however, have focused on single-antenna transmission and the 
performance with multiple antennas is not well investigated so far. 
In this project, considering a source and destination with multiple antennas as well as a single-antenna relay, we look into 
the end-to-end performance of dual-hop transmission with transmit diversity especially achieved by OSTBCs. We 
investigate both nonregenerative and regenerative systems and focus on the performance of bit error rate (BER). More 
specifically, we derive exact expressions for probability density functions (PDFs) and moment generating functions 
(MGFs) for the end-to-end signal-to-noise ratio (SNR) of the dual-hop OSTBC transmissions and then present its BER 
performance when M-ary QAM and M-ary PSK modulations are used, respectively. We assume the two hops experience 
independent, not necessarily identically distributed Rayleigh fadings but the multiple channels in each hop are mutually 
independent and identical. We also study the impact of the number of antennas equipped with the source and destination on 
the end-to-end BER performance. 
 

II. THE DUAL-HOP OSTBC SYSTEMS AND THE CHANNEL 
MODEL 

 
We consider the dual-hop wireless communication system in which the source with nS

t transmit (Tx) antennas is 
communicating with the destination with nD

r receive (Rx) antennas through a single-antenna relay. (Hereafter, superscripts 
S, R and D denote the source, the relay and the destination, respectively.) It is assumed that the relay and the destination 
have perfect channel information for amplifying or decoding the respective signals received. We also assume that the 
communication between the source and the destination is unavailable.  
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In order to achieve spatial diversity, we assume that the source with multiple Tx antennas employs OSTBCs containing K 
complex symbols, x1, x2, · · ·, xK, to be transmitted. Especially, we consider the transmission matrices with the highest code 
rates for two, three and four Tx antennas. The OSTBC with nS

t Tx antennas is denoted by Gn
S

t, where the number of 
columns is the block length and that of rows is the number of Tx antennas. The channel is assumed constant during the 
transmission block.  
The 1×nS

t channel vector for the first hop (i.e., received at the relay) and the nD
r × 1 channel vector for the second hop (i.e., 

received by the destination) are respectively denoted by hR = {hR
i }1×nStand hD = {hD

i}nD
r×1, where hR

iand hD
i represent the 

complex channel coefficients for the ith Tx and Rx antenna at the first and the second hop, respectively and are assumed an 
independent and identically distributed. complex Gaussian random variable (RV) with mean zero and variance β1/2 and 
β2/2 per dimension, respectively. 

 

A. SNR of Nonregenerative OSTBC Transmission 
 In the nonregenerative system considered in this letter, the relay simply amplifies and re-transmits the received signals into 
the second hop. When OSTBCs are used at the source, the signals received at the relay are given by  

 
                       yR = hRGn

S
t+ eR,               (1) 

  
where yR = {yR

l }1×L and eR = {eR
l}1×L. Furthermore, yR

l and eR
l denote the received signal and the additive complex white 

Gaussian noise (AWGN) with mean zero and variance σ2 at the relay during the lth symbol duration, respectively, and the 
block length of the OSTBC is denoted by L. The signals received at the destination from the relay are then expressed as  
                                                      
                      YD = hDxR + ED,     (2)                                              
 
Where YD = {yD il }n

D
r ×L, ED = {eD

 il }n
D

r×L, and xR ={αlyR l }1×L. Furthermore, yD
il and eD

il represent the received signal and 
the AWGN with mean zero and variance σ2, respectively, at the ith Rx antenna during the lth symbol period. αl denotes the 
gain amplified at the relay during the lth symbol period. We assume the amplifying gain is given by α =√nS

t/ ∑nSt
i=1 │hR

i│2 
for all l, which may happen to cause the total transmit power at the relay to exceed a limit. As we will see from simulations, 
the use of amplifying gain α yields an extremely tight lower bound on the average BER of a practical system that limits the 
total transmit power by using amplifying gain α∗l = √P/│yR

l│2, where P is the power limit at the source and the relay. 
When using the squaring approach to decode OSTBCs, the average signal power for xk received at the destination is given 
by  
                                          
 rk =def α4 (∑i=1

nD
r│hD

i│2)2 (∑nS
tj=1│hR

j│2)2  ε[|xk|2] ,                                                 (3) 
 
Where ε[·] denotes an expectation operation. And the noise power related to xk at the destination can be written as 
   
   ηk=def α2(∑nD

ri=1│hD
i│2) (∑nS

tj=1│hR
j│2) 

             ×{α2(∑nD
ri=1│hD

i│2)σ2 + σ2} (4)                 
 
Assuming Px = ε[|x1|2]= · · · = ε[|xK|2]  and using Px = P · L/(nS

t·K), the overall end-to-end SNR per bit in M-ary 
constellations is obtained as 
 
   γNS(ρ) = rk /ηk ·1/log2M 
 
             = cρ[1/∑nS

t j=1│hR
j│2 + 1/nS

t∑i=1
nD

r        │hD
i│2]-1  ,                                                                           (5) 

 
Where superscript NS represents the nonregerative system, ρ denotes the transmit SNR (i.e., ρ = P/σ2), and c = L/(nSt · K 
·log2M). It is noted that the end-to-end SNR for dual-hop OSTBC transmissions has a similar form as that for a dual-hop 
SISO system. 

 
B.SNR of Regenerative OSTBC Transmission 
    
In regenerative dual-hop OSTBC transmissions, the relay decodes the received signals with the squaring approach and 
transmits into the second hop. The signals received by the destination from the relay are expressed as YD = hDˆg+ED, 
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where ˆg denotes the 1 × K transmission vector at the relay that consists of the complex symbols detected by the relay. In 
this paper, we use the maximal ratio combining at the destination in order to achieve receive diversity. The received SNRs 
for the first and the second hop are then given by,  γRS1(ρ) = cρ││hR││2 and γRS2(ρ) = ρ ││hD││2/ log2M, respectively. 
The superscripts RS1 and RS2 represent the first and the second hop in regenerative systems, respectively, and││h││2 
denotes the squared Frobenius norm of vector h. 

 
III. END-TO-END BER ANALYSIS 

 
A. BER Analysis in the Nonregenerative Systems 

 
Lemma 1: Let hR

i and hD
j for all i and j be i.i.d. complex Gaussian RVs with mean zero and variance β1/2 and β2/2 per 

dimension, respectively. Then the MGFs of ZR = 1/∑nS
t j=1│hR

j│2and ZD = 1/ nS
t∑j=1

nD
r │hD

j│2   are respectively given by                         
 
MZ

R(s) = εZ
R [ e−sz] 

 
            =2/β1nS

tΓ(nSt)(1/β1s)−nSt/2Kn
S
t(2√s/β1),                                                                                                                         

                                                               (6) 
 and MZ

D(s) = εZD[ e−sz] 
 

                    =2/β2
nD

r2Γ(nD
r)(nS

t )nD
r(1/nS

t β2s) −nD r /2 ×KnD
r (2√s/nS

t β2)                         (7)  
 

where Kv(.)denotes the vth order modified Bessel function of the second kind, εX[·] denotes the expectation operation with 
respect to X, and Γ(·) represents the gamma function. Since∑ i=1 nS

 t │hR
i│ 2 and ∑j=1

nD
r │hD

j│2  are central chi-squared 
distributed RVs, the MGFs of ZR and ZD can be obtained . In the nonregenerative systems, we assume that the number of 
transmit antennas at the source is the same as the number of receive antennas at the destination (i.e., nS

t = nD
r ).  

Let W = ZR + ZD, and ZR and ZD be assumed independent. then the MGF of W is obtained by  
    MW(s)=4/(Nβ1β2)N/2(Γ(N))2sNKN(2√s/β1)× 
              KN(2√s/Nβ2)                               (8) 
 
where N = nS

t = nD
r . Letting γNS(ρ) = cρ/W and  using the Laplace transform, the CDF (cumulative distribution function) of 

γNS(ρ), FγNS(ρ)(γ), is given by  
 
                            FγNS(ρ)(γ)=1−[d(N−1)/dw(N−1) 

                         L−1{MW(s)/sN}]│w=cρ/γ,     (9)                               
 
where inverse Laplace transform L−1{·} is obtained by 
 
                     L−1{MW(s)/sN}=2e−(β1+Nβ2)/(Nβ

1
β
2

w)/(Nβ1β2)N/2            (Γ(N))2w×KN(2/√Nβ1β2w).                      (10)                     
 
Taking the derivative of FγNS

(ρ)(γ) in (9) and using the expression for the derivative of the modified Bessel function  z 
d/dzKv(z) + vKv(z) =−zKv−1(z), yields the PDF of γNS(ρ), fγ

NS
(ρ)(γ). We can then obtain the MGF of  γNS(ρ) as follows: 

MγNS
(ρ)(s) =εγNS

(ρ) [e−sγ] =∫0
∞e−sγfγNS

(ρ)(γ)dγ. When we use the transmission matrices  for N = 2, 3 and 4, respectively, the 
respective PDFs and MGFs of γNS

(ρ) can be obtained by following the above derivation.As a result, the PDF and the MGF of 
γNS

(ρ) for N = 2 are given by   
            
    fγ

NS(ρ)(γ)=(1/cρ)3γ2/2β1β2
−(β1+2β2)γ/(2cρβ1β2)×[(β1 

 
+2β2/β1β2)2γ/2cρK2(γ/cρ√2/β1β2)+{2γ/cρ(β1 +                                                      
 
2β2/β1β2) √2/β1β2−2√2β1β2}×K1(γ/cρ√2/β1β2) 
 
+4γ/cρβ1β2K0(γ/cρ√2/β1β2)],                    (11)                                             
 
 and 
              MγNS

(ρ) (s)=(1/2β1β2)2 (1/cρ)3Ψ−4[(β1   
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2β2/β1β2)2×(1/cρ)3210/7Ψ22F1(6, 5/2; 9/2;Ω) 
 
+(β1+2β2/β1β2)×(1/cρ)2212/35Ψ2

F1(5,3/2;9/2; 
 
Ω)−28/5cρ× 2F1(4,3/2;7/2; Ω)+3 · 29/35cρ  
 
2F1(4,1/2;9/2;Ω)],                                     (12) 
 
Where  Ω =(β1+2β2/2cρβ1β2)− 1/cρ√2/β1β2+  
 
s/(β1+2β2/2cρβ1β2)+1/cρ√2/β1β2+s,        (13)    
 
                                       
 
    Ψ=(β1+2β2/2cρβ1β2)+1/cρ√2/β1β2+s (14)                                                                                                     
  
2F1(·, ·; ·; ·) is the Gauss’ hypergeometric function ],and c = 1/(2 log2M) since nS

t= 2, K = 2, and L = 2. 
 
 

 
 
                   Fig.1. Average BERs of nonregenerative   and regenerative dual-hop    OSTBCsystems   when  β1 = β2 = 1. 
 
To obtain the MGF in (12). In the same way, the PDFs and the MGFs of γNS

(ρ) for N = 3 and N = 4 can be obtained and their  
numerical results are also shown. 

          Using the MGF and the PDF , we obtained  the BER of M-ary QAM and M-ary PSK. 
 
B.   BER Analysis in the Regenerative Systems 
      

 In regenerative systems, the signal received at the destination has undergone two states of decoding in cascade, and the 
end-to-end BERs of M-ary QAM and M-ary PSK constellations are respectively given by  PU

 RS(ρ) = PU
RS1(ρ) + PU RS2(ρ) − 

2PU
RS1(ρ)PU

RS2(ρ), where U€{M − QAM,M − PSK}, subscript RS denotes the regenerative systems, and RS1 and RS2 
represent the first and the second hop in the transmission, respectively. PU RS1(ρ)and PU

RS2(ρ) denote the BERs of the 
respective constellations and hops. The BERs for M-ary QAM and PSK at each hop are obtained by using the equations of 
γRS1(ρ) and γRS2(ρ) in Section II.B, which have been derived for Rayleigh MIMO channels in Section III. 
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IV. NUMERICAL RESULTS 
 
Dual-hop BERs for the nonregenerative and regenerative systems have been numerically evaluated and compared with 
simulation results. The BER curves are plotted for QPSK and 16-ary QAM. In Fig. 1, BERs are given for the 
nonregenerative and regenerative dual-hop MIMO transmission with OSTBCs for N = 2 and 4 when β1 = β2 = 1. Fig. 1 
shows exact matches between the results from the analysis and the simulation. The figure also indicates that the BER 
performance improves as N increases. In comparing the nonregenerative systems with the regenerative systems, it is clear 
that regeneration of signals improves the BER performance at the cost of increasing relay’s complexity. However, it should 
be noted. 

 

 
 Fig. 2. A comparison of dual-hop BERs with different amplifying gains, α*

l and α, for nonregenerative OSTBC systems. 
 

 
 
Fig. 3. An impact of average received SNRs for the first and the second hop on the BER performances of nonregenerative 
and regenerative dual-hop OSTBC systems  that nonregenerative systems can have the better BER when the transmit SNR 
is especially low.  
 
Fig. 2 shows simulation results of dual-hop BERs in the nonregenerative systems with different amplifying gains, α*

l and α, 
when β1 = β2 = 1 and β1 = 2, β2 = 1(β1 _= β2), respectively. It is clear from the figure that the BER for amplifying gain α is 
extremely tight lower bound on the BER for amplifying gain α*

l even at low transmit SNR. A similar result was provided 
for SISO nonregenerative systems. 
 Let γ−

1 = ρβ1 and γ−
2 = ρβ2 denote the average received SNRs for the first and the second hop, respectively. Then Fig. 3 

shows an impact of the average received SNRs for the first and the second hop on the BER performances of 
nonregenerative  and regenerative dual-hop OSTBC systems. In Fig.3, it is observed that the BER performance degrades 
further from the optimal performance as the difference between the average received SNRs goes up (i.e., the intermediate 
relay is far from  
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Fig. 4. An impact of average channel gain ratio β2/β1 on the BER performances of nonregenerative and regenerative 
systems with QPSK when ρ = 12 dB and β1 = 1.  
 
The middle between the source and the  destination). For all the cases, the BER difference between nonregenerative and 
regenerative systems becomes small as the average received SNR for the first hop decreases (i.e., as the relay is close to the 
destination). For N = 4, it is remarked that the nonregenerative system performs better than the regenerative system when 
the average received SNR for the first hop is large (i.e., as the relay is close to the source). Using the BER results for the 
average received SNRs, optimal transmit powers can be allocated to the source and the relay.  
 Fig. 4 shows an impact of the ratio of the average channel gain for the second hop to the first hop, β2/β1, on the BER 
performances of nonregenerative and regenerative systems with QPSK. We assume ρ = 12 dB and β1 = 1. As seen in Fig. 3, 
the BER gap between nonregenerative and regenerative systems becomes small at the both ends of the graphs for N = 2 but 
only at high ratios for N = 3 and 4. The gap is maximized between β2/β1 = −5 dB and −3 dB. when N = 3 and 4, the 
nonregenerative system achieves better BER performance than the regenerative system at low ratios where the average 
channel gain for the second hop is much smaller than that for the first hop. The reason is that, in the regenerative system, 
the second hop has the code rate of 1 regardless of the number of antennas N as  in the equation of γRS2(ρ)  and the end-to-
end performance is dominated by the second hop at the low ratio.  
 

V. CONCLUSIONS 
 
This project has presented a study on the end-to-end performance of dual-hop wireless communication systems employing 
transmit diversity with OSTBCs, where a nonregenerative or regenerative relay is equipped with a single antenna. We have 
derived PDF and MGF of the dual-hop SNR. And then we can obtain BERs. Numerical results show that the BER analysis 
provided in the letter makes an exact match with the simulation in various multiple-antenna or relaying scenarios. 
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