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ABSTRACT: Big data concerns of large-volume, complex, growing data sets with multiple, autonomous sources. 

With the fast development of networking, data storage, and the data collection capacity, big data are now rapidly 

expanding in all science and engineering domains, including physical, biological and biomedical sciences. Data 

mining have challenges with big data. From all the challenges, existing systems focused on data privacy and data 

security. Data privacy can protect using K- Anonymity technique and data security is implemented using 

authentication method. K- Anonymity is the method that annonymized data fields such that sensitive information 

cannot be pinpointed to an individual record. But leakage of sensitive data are still there, so there must need a better 

privacy preserving technique. In this paper we are proposing an alternate method using Alpha K Anonymity in order 

to obtain better privacy. 
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I. INTRODUCTION 

 
Big Data concern large-volume, complex, growing data sets with multiple, autonomous sources. With the fast 

development of networking, data storage, and the data collection capacity, Big data are now rapidly expanding in all 

science and engineering domains, including physical, biological and biomedical sciences. Big data starts with large-

volume, heterogeneous, autonomous sources with distributed and decentralized control, and seeks to explore 

complex and evolving relationships among data. Information sharing is an ultimate goal for all systems involving 

multiple parties, so data privacy is an important factor for data mining with big data. It cannot manage them with our 

current methodologies or data mining software tools. Big data mining is the capability of extracting useful 

information from these large datasets or streams of data, that due to its volume, variability, and velocity, it was not 

possible before to do it. The Big data challenge is becoming one of the most exciting opportunities for the next 

years. K- Anonymity is the method that anonymized data fields such that sensitive information cannot be pinpointed 

to an individual record. One of the major benefits of the data anonymization based information sharing approaches 

is that, once anonymized, data can be freely shared across different parties without involving restrictive access 

controls. 

 
II. PROBLEM STATEMENT 

 
Big data characteristics are HACE theorem. This theorem states that Big Data starts with large-volume, 

Heterogeneous; Autonomous sources with distributed and decentralized control, and seeks to explore Complex and 

Evolving relationships among data. Then the challenges of big data are classified in to three tiers and they are big 

data mining platform, big data semantics and inside big data semantics there are two issues information sharing and 
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data privacy and domain and application knowledge and the tier III is big data mining algorithms. In tier III there are 

three steps local learning and model fusion for multiple information sources, mining from sparse uncertain, and 

incomplete data, mining complex and dynamic data. The challenges at [1] Tier I focus on data accessing and 

arithmetic computing procedures. Because Big Data are often stored at different locations and data volumes may 

continuously grow, an effective computing platform will have to take distributed large-scale data storage into 

consideration for computing. The challenges at Tier II center on semantics and domain knowledge for different Big 

Data applications. Such information can provide additional benefits to the mining process, as well as add technical 

barriers to the Big Data access (Tier I) and mining algorithms (Tier III) [1][7]. 

 

 
Figure 1:- Big Data Processing Framework 

 

But implementing these all tiers are not feasible so concentrate in data privacy and also in security related 

to big data mining. Privacy preservation has become a major issue in many data mining applications. When a data 

set is released to other parties for data mining, some privacy-preserving technique is often required to reduce the 

possibility of identifying sensitive information about individuals. This is called the disclosure-control problem 

[1][7]. While the motivation for sharing is clear, a real world concern is that Big Data applications are related to 

sensitive information, such as banking transactions and medical records. Simple data exchanges or transmissions do 

not resolve privacy concerns. But public disclosure of an individual’s information can have serious consequences for 

privacy. To protect privacy, two common approaches are to 1) Restrict access to the data, such as adding 

certification or access control to the data entries, so sensitive information is accessible by a limited group of users 

only, and 2) Anonymized data fields such that sensitive information cannot be pinpointed to an individual record. 

 

For the first approach, common challenges are to design secured certification or access control 

mechanisms, such that no sensitive information can be misconduct by unauthorized individuals. For data 

anonymization, the main objective is to inject randomness into the data to ensure a number of privacy goals. For 

example, the most common k-anonymity privacy measure is to ensure that each individual in the database must be 

indistinguishable from k-1 others. Common anonymization approaches are to use suppression, generalization, 

perturbation, and permutation to generate an altered version of the data, which is, in fact, some uncertain data. 

Privacy relates to what data can be safely disclosed without leaking sensitive information regarding the legitimate 

owner. Thus, if one asks whether confidentiality is still required once data have been annonymized, the reply is yes 

if the anonymous data have a business value for the party owning them or the unauthorized disclosure of such 

anonymous data may damage the party owning the data or other parties [5]. 
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III. PRIVACY PRESERVING TECHNIQUES 

 

A number of techniques have been developed to provide privacy to the databases such as, randomization, 

inference, secure multiparty computation, distributed privacy preservation, personalized privacy preservation and 

anonymization. 

 

A. Randomization  

 

The randomization method provides effective way of preventing the user from learning sensitive data 

which can be easily implemented because the noise added to the given record is independent from the other records. 

The amount of noise is large enough to smear original values, so individual record cannot be recovered. The 

randomization method is simple as compare to other methods because it does not require to knowledge of other 

records. That is why randomization can be used without the use of server that contains other records also. Large 

randomization increases the uncertainty and the personal privacy of the users. However, at the same time, larger 

randomizations can cause loss in the accuracy perturbation and randomization based approaches [4]. 

 

B. Distributed privacy preservation  

 

The key goal in most distributed methods for privacy-preserving data mining is to allow computation of 

useful aggregate statistics over the entire data set without compromising the privacy of the individual data sets 

within the different participants. Thus, the participants may wish to collaborate in obtaining aggregate results, but 

may not fully trust each other in terms of the distribution of their own data sets. For this purpose, the data sets may 

either be horizontally partitioned or be vertically partitioned. In horizontally partitioned data sets, the individual 

records are spread out across multiple entities, each of which have the same set of attributes. In vertical partitioning, 

the individual entities may have different attributes (or views) of the same set of records. Both kinds of partitioning 

pose different challenges to the problem of distributed privacy preserving data mining. The problem of distributed 

privacy-preserving data mining overlaps closely with a field in cryptography for determining secure multi-party 

computations. 

 

C. Secure Multi Party Computation 

 

Goal of secure party computation is to compute function when each party has some input. It generally deals 

with problems of function computation with distributed inputs. In this protocol, parties have security properties e.g. 

privacy and correctness. Regarding privacy a secure protocol must not reveal any information other than output of 

the function. Example of such a computation is the millionaires' problem”, in which two millionaires want to find 

out who is richer, without revealing their actual worth. Though there is difference between SMC and k-anonymity 

model. In k -anonymity model result can be out during the process but this is not the case in SMC, k-anonymity 

model protect actual value. K-anonymity and SMC are used in privacy-preserving data mining, but they are quite 

different in terms of efficiency, accuracy, security and privacy. 

 

D. Inference Method 

 

Inference is a method to subvert access control in database systems. An inference occurs when a user is 

able to infer some data without directly accessing them. A simple way to monitor user accesses is to examine each 

user query, and reject any query that accesses sensitive data. However, it is possible for a user to use a series of 

unsuspicious queries to infer data in the database. The interaction between the k-anonymity principle and the 

inference detection rules deems types of inferences harmless. Because of the static anonymity applied on the 
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sensitive data via k-anonymity, no longer will any tuple have unique characteristics, so that unique characteristic 

inferences are impossible. For example if there was only one manager older than 50, his age will be statically 

modified, leading to one of two outcomes: either the query that requested the pair (age, salary) for all employees that 

are older than 50 will return at least k tuples, either it will not return any tuples.  

 

E. Data Swapping 

A related method is that of data swapping, in which the values across different records are swapped in order 

to perform the privacy-preservation. One advantage of this technique is that the lower order marginal totals of the 

data are completely preserved and are not perturbed at all. Therefore certain kinds of aggregate computations can be 

exactly performed without violating the privacy of the data. This technique does not follow the general principle in 

randomization which allows the value of a record to be perturbed independent; y of the other records. Therefore, this 

technique can be used in combination with other frameworks such as k-anonymity, as long as the swapping process 

is designed to preserve the definitions of privacy for that model 

 

F. Personalized Privacy Preservation 

 

Not all individuals or entities are equally concerned about their privacy. For example, a corporation may 

have very different constraints on the privacy of its records as compared to an individual. This leads to the natural 

problem that, they wish to treat the records in a given data set very differently for anonymization purposes. From a 

technical point of view, this means that the value of k for anonymization is not fixed but may vary with the record. A 

condensation based approach has been proposed for privacy-preserving data mining in the presence of variable 

constraints on the privacy of the data records. This technique constructs groups of non-homogeneous size from the 

data, such that it is guaranteed that each record lies in a group whose size is at least equal to its anonymity level. 

Subsequently, pseudo-data is generated from each group so as to create a synthetic data set with the same aggregate 

distribution as the original data. This technique assumes that an individual can specify a node of the domain 

generalization hierarchy in order to decide the level of anonymity that he can work with.  

 
IV. K-ANONYMITY 

 

A large number of privacy models were developed most of which are based on the k-anonymity property. 

The K-anonymity model was proposed to deal with the possibility of indirect identification of records form public 

databases, k-anonymity means each released record has at least (k-1) other records in the release whose values are 

indistinct. For example, Hospital contains large database in such a way that identity of individual cannot be 

revealed. It helps to reveal public databases without compromising privacy. Thus, it prevents database linkages. In 

k-annonymity the granularity of data representation is reduced by using techniques such as generalization and 

suppression. The granularity is reduced to such a level that any given record maps onto a least K other records in the 

dataset. A general method widely used for masking initial micro data to conform to the k-anonymity model is the 

generalization of the quasi identifier attributes. 

 

One way to enable effective data mining while preserving privacy is to anonymize the data set that includes 

private information about subjects before being released for data mining. One way to anonymized data set is to 

manipulate its content so that the records adhere to k-anonymity. Two common manipulation techniques used to 

achieve k-anonymity of a data set are generalization and suppression. Generalization refers to replacing a value with 

a less specific but semantically consistent value, while suppression refers to not releasing a value at all. 

Generalization is more commonly applied in many domains since suppression may dramatically reduce the quality 

of the data mining results if not properly used. 
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 One of the major benefits of the data anonymization based information sharing approaches is that, once 

anonymized, data can be freely shared across different parties without involving restrictive access controls. This 

naturally leads to another research area namely privacy preserving data mining where multiple parties, each holding 

some sensitive data, are trying to achieve a common data mining goal without sharing any sensitive information 

inside the data[5].Similar to all other fields of security, database security uses authentication, authorization, and 

accounting to ensure that only authenticated users perform authorized activities at authorized points in time. 

Database security includes many layers of security, which can be classified in topics such as physical security, 

network security, encryption, and authentication. K-anonymity is one of the most important concepts in data 

anonymity through re-identification. Although there are many data sets available for linking to external attackers, k- 

anonymity does not make any assumptions regarding them. The re-identification algorithm is an implementation of 

k-annonymity, and is triggered after every change of the data set (insertion, deletion or update). The k factor is 

dynamically decided based on the number of records existing in the data ware house.  

 

 

Name Age Job Postcode Cibil 

Value 

Kashyab 

 

30 IT-ENG 4351 630 

Neerav 35 MED-

DOC 

4352 730 

Andreia 28 MED-

DOC 

4353 700 

Jacob 34 GOV-

EMP 

4354 710 

Diya 25 GOV-

EMP 

4355 700 

Table 1- Original Data Set 

 

  This table 1 contains five columns with five tuples, where name, job and postcode are quasi identifiers and 

cibil value is the sensitive attribute. Here a sample data set is given. So when we disclose this raw data set to the 

public, it is possible to identify the person and his cibil value. To avoid that identification K-anonymity is used, 

anonymized data set using k-annonymity is given below. 

 

 

Name Age Job Postcode Cibil 

Value 

Kashyab 

 

30 IT-ENG 435* 630 

Neerav 35 MED-

DOC 

435* 730 

Andreia 28 MED-

DOC 

435* 700 

Jacob 34 GOV-

EMP 

435* 710 

Diya 25 GOV-

EMP 

435* 700 

Table 2:- Anonymized Data Set Using K-Annonymity. 
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In table 2 the post codes last value are anonymized, so no one can distinguish the post codes and cannot pin 

pointed to an individual record. K-anonymity doesn’t concentrate on the relationship between the sensitive attributes 

so there is still leakage of sensitive data from these anonymized data set. To overcome the disadvantage we need a 

better anonymization technique to improve the privacy aspects. 

 

V. CONCLUSION AND FUTURE WORK 

 

Big Data mining is the ability of extracting constructive information from huge streams of data or datasets, 

that due to its variability, volume, and velocity. Data mining includes exploring and analyzing big quantity of data to 

locate different molds for big data. So while doing data mining in big data, data privacy is an important issue. So in 

this paper different types of privacy preserving techniques are discussed. But K-anonymization is not as much 

efficient in the area of big data mining so more sophisticated model is necessary to protect the association of 

individuals to sensitive information. For that Alpha K anonymity technique will be more sophisticated,   trying to 

implement a personalized privacy preserving parallel Alpha K anonymity model in the place of  K Anonymity.   
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