

(An ISO 3297: 2007 Certified Organization) Website: <u>www.ijareeie.com</u> Vol. 6, Issue 5, May 2017

Synthesis and Characterizations of TiO₂/In₂S₃ Semiconductor Sensitized Solar Cell

Wagh VG^{*}, Bansode SB

Department of Physics, K.V.N. Naik College, Nashik, India

Abstract: The compact layer of Titania (TiO₂) nanostructured films was made available for the fabrication of SSSC. TiO₂ deposited by doctor blade method on FTO substrate which is acts as photoanode. The surface area of TiO₂ was kept 0.25 cm^2 . In₂S₃ was deposited on FTO / TiO₂ by chemical bath deposition method at room temperature in acidic as well as in alkaline bath. Without any further treatment prepared films were further used for the synthesis of photoelectrode of SSSCs. efficiency of fabricated solar cell in acidic as well as in alkaline bath is 0.034 and 0.007% respectively.

Keywords: Indium sulphide; Chemical bath deposition; Thin film; Semiconductor sensitized solar cell

I. INTRODUCTION

Photovoltaic cell is most useful approach to generate an electrical power from solar radiation. Third generation solar cell specially designed to provide low cost, simple fabrication technology and to overcome the SQ limit photo conversion efficiency [1]. In organic heterojunction solar cell charge separation occurs at the junction and maximum efficiency is around 7% but it has vast potential [2-4]. However because of being eco-friendly and effective technology for solar energy conversion DSSC received great attention [5-8]. The use of semiconductor materials in solar cells as sensitizers was started from 1990's [9-12]. Because of high cost and low stability of DSSC, narrow band gap semiconductor sensitized solar cells are the best alternatives to enhance the conversion efficiency [13]. SSSC achieve higher conversion efficiency due to multiple electron-hole pair generation [14]. Hence sensitized semiconductor has been regard as superb alternative to replace DSCs.

It is reported that TiO_2 /In_2S_3 fabricated solar cell shows quite low energy conversion efficiency which less than 1% [15]. In_2S_3 sensitized solar cell were prepared by chemical bath deposition method achieved efficiency as shown in Table 1 [16].

(An ISO 3297: 2007 Certified Organization)

Website: www.ijareeie.com

Vol. 6, Issue 5, May 2017

Photoanode	V _{oc} (mV)	J _{sc} (mA/cm ²)	FF %	Efficiency (%)
TiO ₂ /In ₂ S ₃	504	0.42	11	0.02
TiO ₂ /In ₂ S ₃ (annealed)	362	0.52	39	0.07
$TiO_2/In_2S_3/Y_2O_3$	524	0.92	65	0.32
$TiO_2/In_2S_3(annealed)/Y_2O_3$	557	0.75	66	0.27

Table 1: Photovoltaic performance parameter of In₂S₃ sensitized TiO₂ solar cell.

II.EXPERIMENTAL DETAILS

2.1. Synthesis of TiO₂/In₂S₃ Semiconductor Sensitized Solar Cell

The compact layer of Titania (TiO₂) nanostructured films was made available for the fabrication of SSSC. TiO₂ deposited by doctor blade (DB) method on FTO substrate which is acts as photoanode [17]. The surface area of TiO2 was kept 0.25 cm². In2S3 was deposited on FTO / TiO₂ by chemical bath deposition method at room temperature in acidic bath (Figure 1). With the same deposition parameter In2S3 was deposited on FTO / TiO₂ by CBD at room temperature in alkaline bath (Figure 2). For the deposition of TiO₂ / In₂Se₃film the compositional mixture of indium sulphate, 80% Hydrazine hydrate, thioacetamide, triethanolamine used. FTO glass substrate with deposition of TiO2 immersed vertically. Deposition of was carried out in alkaline bath. Without any further treatment prepared films were further used for the synthesis of photoelectrode of SSSCs.

Figure 1: Actual photographs of In_2S_3 films deposited on TiO_2 by CBD method in acidic bath on FTO-coated glass substrates.

(An ISO 3297: 2007 Certified Organization) Website: <u>www.ijareeie.com</u> Vol. 6, Issue 5, May 2017

Figure 2: Actual photographs of In₂S₃ films deposited on TiO₂ by CBD method in alkaline bath on FTO-coated glass substrates.

III. RESULTS AND DISCUSSION

The TiO_2/In_2S_3 semiconductor sensitized solar cell devise was fabricated using TiO_2/In_2Se_3as a photoanode and platinum coated FTO glass as the counter electrode. In this case, In_2S_3 deposited on FTO/TiO₂.

Figure 3: Actual photographs of depositing In₂S₃ on TiO₂ in acidic bath on FTO-coated glass substrates and fabricating it for SSSC.

(An ISO 3297: 2007 Certified Organization) Website: <u>www.ijareeie.com</u> Vol. 6, Issue 5, May 2017

Figure 4: Actual photographs of depositing In₂S₃ on TiO₂ in alkaline bath on FTO-coated glass substrates and fabricating it for SSSC.

The real photographs of In_2S_3 films on FTO shown in (Figures 3 and 4). The TiO₂ / In_2Se_3SSSC devices were fabricated using TiO₂ / In_2S_3 electrode on FTO as the photoanode and platinum coated FTO glass substrate as the counter electrode. Polysulphide solution containing 10 mM of NaOH, 10 mM of S and 10 mM of Na₂S as the redox electrolyte in between photoanode and counter electrode. The active surface area of each device was maintained about 0.25 cm². Cell voltage corresponds to the difference between redox potential of the electrolyte and conduction band energy level of the semiconductor [18]. Voltage and current measurements were done by using Keithly-2602 source meter.

Figure 5: Photo-current density-photovoltage (J-V) characteristics of SSSC based on FTO TiO₂ / In₂Se₃/ Pt-(acidic bath).

(An ISO 3297: 2007 Certified Organization) Website: <u>www.ijareeie.com</u> Vol. 6, Issue 5, May 2017

Figure 6: Photo-current density- photovoltage (J-V) characteristics of SSSC based on FTO TiO₂ / In₂Se₃/ Pt-(alkaline bath).

Figures 5 and 6 shows the J-V curves measured for In_2S_3 sensitized TiO₂photoelectrode. Whereas Figure 5 gives output parameter for In_2S_3 sensitized TiO₂photoelectrode. All the output parameters namely, open-circuit voltage (Voc) short circuit current densities (Jsc), fill factor (FF) and photovoltaic efficiency (η) are given in the Table 2. It is observed that the Jsc and conversion efficiency increased for In_2S_3 sensitized TiO₂photoelectrode as well as for In_2S_3 sensitized TiO₂photoelectrode deposited in acidic bath. The performance of SSSC does not increase with the films deposited in alkaline bath due to reduction in electrolyte interface because of formation of dense films.

Sample	Area (cm ²)	V _{oc} (mV)	J _{sc} (mA/cm ²)	FF (%)	Efficiency (%)
TiO ₂ /In ₂ S ₃ /Acidic	0.25	121	0.189	23	0.03
TiO ₂ /In ₂ S ₃ /Alkaline	0.25	34	0.045	27	0.002

Table 2: Photovoltaic parameters of TiO₂/ In₂S₃ based SSSC for the films deposited on FTO coated glass substrates.

Among this the best performance with Jsc = 0.197 mA and Voc = 0.197 is observed for the film deposited in acidic bath with In2se3 sensitization. It is reported that the change in Voc may be the influenced by the negative band edge movement of the FTO layer and electron recombination Occured by the passivation of sub-band-edge surface states [19-21].

IV. CONCLUSION

The In_2S_3 sensitized thin films were successfully synthesized deposited by chemical method in acidic and alkaline bath In_2S_3 deposited by CBD for SSSC over TiO₂ surface. The SSSC fabricated with the In2S3 films deposited on TiO₂

(An ISO 3297: 2007 Certified Organization)

Website: www.ijareeie.com

Vol. 6, Issue 5, May 2017

by CBD method at room temperature in acidic bath on FTO-coated glass substrates. Because of efficient charge transport and reduced the recombination losses SSSCs shows good performance with efficiency 0.034% which is close to the best reported.

REFERENCES

1. Gartzel M, Review article Photoelectrochemical cells. Nature 2001; 414: 338-344.

2. Green MA, Emery K, et al. Solar cell efficiency tables: Solar cell efficiency tables, Progress in Photovoltaics Research and Applications 2016; 24: 905-913.

3. Lonakar GS, Mahajan MS, et al. Modelling thin film formation by ultrasonic spray method: a case of PEDOT: PSS thin film. Organic Electronics 2012.

4. Liang Z, Xu J, et al. For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv Mater E 2010; 22: 135.

5. Wu CH, Chen MC, et al. Porphyrins for efficient dye- sensitized solar cell covering the near IR regeion. J Mater Chem 2014; 2: 991.

6. Chiba AY, Islam Y, et al. Dye- sensitized solar cels with conversion efficiency 11.1% Jpn. J Appl Phys 2006; 45: L638.

7. Shang JG. Wu M, et al. Facile synthesis of mesoporous tin oxide spheres and their applications in dye-synthesized solar cell. J Phys Chem 2012; 116: 20140-20145.

8. Jgattzel M, Review: Dye sinthesizied solar cell. Photochem Photbiol 2003; 4: 145.

9. Serpone E. Borgarello, et al. Visible light induced generation of hydrogen from H2S in mixed semiconductor dispersions; improved efficiency through inter- particle electron transfer. J Chem Soc Chem Commun 1984; 342-344.

10. Zaban A, Micic OI, et al. Photosensitization of nanoporous TiO_2 electrodes with InP quantum dots. Langmuir 1998; 14: 3153.

11. Gopidas KR, Bohorquez M, et al. Photophysical and phaotochemical aspects of coupled semcondoctors charged transfer process in colloidal cadmium sulfide- titanium cadmium sulfide – silver(I) iodide system. J Phys Chem 1990; 94: 6435.

12. Vogel R, Pohl K, et al. Sensitization of highly porous, polycrystalline TiO2 electrodes by quantum sized CdS. Chem Phys Lett 1990; 174: 241.

13. Sun WT, Yu Y, et al. CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. Chem Soc 2008; 130: 1124.

14. Mali SS, Desai SK, et al. CdS- sensitized TiO2 nanocorals: hydrothermal synthesis, characterization and applications. Photochem Photoboil Sci 2011;10: 1652.

15. Gan LX, Li X, et al. TiO2 nanorod arrays functionalized with In2S3 shell layer by a low-cost route for solar energy conversion. Nanotechnology 2011; 22: 305601.

16. Zhang Y, Zhu J, et al. AIEgen-based theranostic system: targeted imaging of cancer cells and adjuvant amplification of antitumor efficacy of paclitaxel. Photochem Photobil A: Chem 2014; 281: 53.

17. Valdes M, Frontini MA, et al. Low-cost 3D nanocomposite solar cells obtained by electrodeposition of CuInSe2. Appl Surf Sci 2007; 254: 303.

18. Kulkarni AN, Habib M, et al. Sb2Se3 sensitized heterojunction solar cells. Renew Sustain Energy 2015; 4: 15.

19. Wen P, Xue M, et al. Relationships between cell parameters of dye-sensitized solar cells and dye-adsorption parameters. Acs Appl Mater Interface 2012; 4: 1928-1934.

20. Gubbala S, Chakrapani V, et al. Band-edge engineered hybrid structures for dye-sensitized solar cells based on SnO2 nanowires. Adv Funct Mater 2008; 18: 2411-2418.

21. Derfus AM, Chan WCW, et al. Probing the cyto toxicity of semiconductor quantum dots. Nano Letters 2004; 4: 11-18.