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INTRODUCTION
In recent years, thiazolidinone and their derivatives have become among the most extensively investigated compounds [1-5]. 

They constituted a very important group of heterocyclic compounds, having valuable biological activities in the areas of medicine 
as well as agriculture. The thiazolidinone scaffold is a central part of biologically active compounds with various applications and 
uses [6-8] such as antibacterial [9-11], antifungal [12-14], anticancer [15,16], anti-tubercular [17,18], antimalarial [19], anticonvulsant [20,21], 
anti-inflammatory [22,23], anti-HIV [24,25] and analgesic [26]. The 4-thiazolidinone moiety is very versatile and has featured in many 
drugs (Figure 1) and several compounds with 4-thiazolidinone core structure were found to kill selectively drug resistant cancer 
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ABSTRACT
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Figure 1. Structure of lead compounds belongs to 4-thiazolidinone.
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cells and induce cell death [27]. The peptidoglycan is an essential component of the cell wall of both Gram-positive and Gram-
negative bacteria. The 4-Thiazolidinones have been reported as novel inhibitors of the bacterial enzyme Mur B which is precursor 
acting during the biosynthesis of peptidoglycan [28].

The Vilsmeier-Haack reagent has been proud to be a versatile reagent capable of exacting a large variety of synthesis 
transformation [29]. It finds application in formylation [30], cyclonaloaddition [31] and cyclisation [32]. Recently, its potentiality wax 
explored in the synthesis of substituted aldehydes from acetanilide, N,N-dimethylformamide (DMF) and phosphoryl trichloride 
(POCl3) to develop novel quinolone based, fused, heterocyclic systems as potential anticancer agents [33-39], a quinolone nucleus 
with different substituent’s at 2 and 3 positions was required which afforded a versatile synthon for farther hetero annulations. 
For the past few years, our group has also been preparing and evaluating biologically important compounds.

The most common approach for the synthesis of the thiazolidinone ring involves substituted aldehyde, substituted amine 
and thioglycolic acid in one step or two steps. So many researchers have dedicated much effort to synthesis of 4-thiazolidinones 
using benzene or toluene [40,41], PEG [42], ionic liquids [43,44], Bi(SCH2COOH)3 

[45], ZnCl2 
[46], protic acid [47], zeolite [48], silica gel [49], 

and Saccharomyces cerevisiae [50] as catalysts. However, some of these procedures have major disadvantages, for example 
prolonged reaction time, use of special apparatus (Dean and Stark assembly), use of much expensive and environmentally very 
toxic catalysts and solvents, and low or moderate yields. Therefore, because of recent interest in green chemistry, there is a 
need to develop a simple and highly efficient procedure using a reusable and environment-friendly catalyst and Multicomponent 
reaction [51-55].

In continuation of our work [56-63], on the synthesis of bioactive compounds, we have synthesized some thiazolidinone 
analogues. Here, we wish to mention the development and implementation of a methodologies allowing for the synthesis of 
2-chloro-(substituted) quinoline-3-carbaldehyde (2a-d) and 2-((substituted)-2-chloroquinolin-3-yl)-3-((substituted) phenyl) 
thiazolidin-4-one (5a-p).

EXPERIMENTAL
Substituted acetanilide, β-cyclodextrin-SO3H, aromatic amines, DMF, POCl3 and various solvents were commercially available. 

The major chemicals were purchased from Sigma Aldrich and Avra labs. Reaction courses were monitored by TLC on silica gel 
precoated F254 Merck plates. Developed plates were examined with UV lamps (254 nm). The IR spectra were recorded on FT-IR 
(Bruker). The melting points were recorded on SRS Optimelt, melting point apparatus and these are uncorrected. The 1H NMR 
spectra were recorded on a 400 MHz Bruker spectrometer. The chemical shifts are reported as δppm units. The 13C NMR spectra 
were recorded on a 100 MHz Bruker spectrometer. Chemical shifts are reported as δppm units. The following abbreviations are 
used; singlet (s), doublet (d), triplet (t), quartet (q), multiplet (m) and broad (br). The mass spectra were taken with micromass-
QUATTRO-II of water mass spectrometer.

RESULTS AND DISCUSSION
We have developed the protocol for synthesis and screening of model reaction of 2-chloroquinoline-3-carbaldehyde (2a) 

(Scheme 1) by cyclisation between acetanilide towards DMF and POCl3. In terms of the effect on the yield compounds 2a-d upon 
varying the molar proportions of POCl3 from 3 moles to 18 moles (Table 1). The Vilsmeier-Haack reaction of acetanilide 1a (1 

NHCOCH3

DMF
 + 

POCl3

N

CHO

Cl

1a 2a

Scheme 1. Screening of model reaction of 2-chloroquinoline-3-carbaldehyde (2a)a.
aReaction condition (2a): N-phenylacetamide (1a), DMF, POCl3, 0-5°C, 1 h, reflux 2-9 h.

Entry DMF POCl3 Time (h) Yield
1 3 3 8 27
2 3 6 9 25
3 3 9 6 68
4 3 12 2 98
5 3 15 6 70
6 3 18 7 60

aAll the reaction was carried out in various molar proportion of compounds, bIsolated yield.

Table 1. Screening of the molar proportions, reaction time and yield (2a)a
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mmol), DMF (3 mmol) and POCl3 (12 mmol) without solvent and various proportions was selected as a model reaction to optimize 
the reaction conditions. In terms of the effect various molar proportions on the cyclisation reaction, acetanilide 1a (1 mmol), DMF 
(3 mmol) and POCl3 (12 mmol) molar proportions was found to be the best molar proportions for the reaction (Table 1); other 
molar proportions, were less efficient (Table 1).

The DMF and POCl3 molar proportions 3:3 and 3:6 gave the corresponding product in a 27% and 25% yield, which was the 
worst among these molar proportions (Table 1). Nevertheless, these yields were generally low before further optimizations. To 
increase the efficiency of the reaction, the effects of different molar proportions were investigated (Table 1). The entry 4 exhibited 
the best performance with molar proportions of DMF and POCl3 3:12 (96%). The molar proportions 3:15 and 3:18 gives good 
yields (Table 1). All the reactions were carried out in various molar proportions of each compound. Among these reactions, 3:12 
molar proportions turned out to be the best choice with yields of 98%. We would like to mention here this molar proportion was 
the best choice with a better yield and less time required for the completion of the reaction (Table 1).

Thus, we decided to carry out the reactions in 3:12 molar proportions. As shown in Table 1, optimal conventional method 
reaction conditions were obtained using molar proportional ratio of 1:3:12 of acetanilide: DMF: POCl3 respectively in the absence 
of the solvent. This optimal reaction conditions, the synthesis of the compound (2a–d) by Vilsmeier-Haack reaction showed in 
Scheme 2 and Table 2.

Further, we synthesized title compounds of 2-((substituted)-2-chloroquinolin-3-yl)-3-((substituted) phenyl) thiazolidin-4-one 
(5a-p). But before that we were screening catalyst, solvents, reaction time and yield of model reaction 2-(2-chloroquinolin-3-yl)-3-
phenylthiazolidin-4-one (5a) (Schemes 3 and 4; Tables 3 and 4).

In view of green chemistry, it was decided to prefer water as solvent in our initial study for optimization of the catalyst. During 
this study, the model reaction was performed using water as a reaction medium at reflux temperatures. The desired product 5a 

R
NHCOCH3

DMF
 + 

POCl3

80-90
 
0C N

CHO

Cl

1a-d 2a-d

R

 
R=1a, 2a=H 

1b, 2b=3, 5- Dimethyl 

1c, 2c=2-Chloro 

1d, 2d=4-Nitro 

Scheme 2. Synthesis of 2-chloro-(substituted) quinoline-3-carbaldehyde (2a-d)a.
aReaction conditions: 2a-d (1 mmol), DMF (3 mmol), POCl3 (12 mmol), Temp. 80-90°C, 2-3 h.

Entry Compounds (2a-d) DMF : POCl3 Product Time (h) Yieldb (%) M.P. (ºC)

2a

N

CHO

Cl

3:12

N

CHO

Cl

3 98 148-150

2b

NHCOCH3H3C

CH3 3:12

N

CHO

ClH3C

CH3 2 96 210-212

2c

NHCOCH3

Cl

3:12

NHCOCH3

O2N
2 96 188-190

2d

NHCOCH3

O2N 3:12

N

CHO

Cl

O2N 2 97 290-292

aReaction conditions: 2a-d (1 mmol), DMF (3 mmol), POCl3 (12 mmol), Temperature 80-90°C, bIsolated yield

Table 2. Physical data of 2-chloro-(substituted) quinoline-3-carbaldehyde (2a-d)a.
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was obtained in 20% only, even after reaction for 9h in water under reflux (Table 4).

In a subsequent experimental detailed, various acid catalysts bearing sulfonated functionality, for example sulfamic acid, 
sulfanilic acid, p-toluenesulfonic acid (p-TSA), and β-cyclodextrin-SO3H and other catalyst such as Hydrochloric acid, Piperidine 
ammonium acetate, Pyrrolidine ammonium acetate were screened under reflux conditions with water as a solvent. Reactions 
conducted in the presence of Hydrochloric acid, Piperidine ammonium acetate, Pyrrolidine ammonium acetate, sulfamic acid, 
p-TSA and sulfanilic acid given less yield even after completion of reaction with 50%, 30%, 38%, 20%, 30%, and 45% yields 
respectively.

(Table 3). When β-cyclodextrin-SO3H was used, the reaction afforded 5a in 80% yield within 1 h (Table 3).

The investigation toward the effect of solvent, the model reaction was further performed with β-cyclodextrin-SO3H in different 
solvents (acetic acid, DMF, methanol, toluene, ethanol, and Isopropanol) (Table 4). Use of these solvents failed to improve the 
yield and rate of the reaction. However, considering the increasing importance of solvent-free reactions in organic synthesis, 

N

CHO

Cl

NH2

HS COOH
+ +

N

S
N

Cl

O

Solvent

Reflux

5a2a 3a 4

Scheme 4. Screening of model reaction 2-(2-chloroquinolin-3-yl)-3-phenylthiazolidin-4-one (5a)a

aReaction condition (5a): 2a (1 mmol), 3a (1 mmol), thioglycolic acid 4 (1.5 mmol), Solvent, Reflux 1-12 h.
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Scheme 3. Screening of model reaction 2-(2-chloroquinolin-3-yl)-3-phenylthiazolidin-4-one (5a)a

aReaction condition (5a): 2a (1 mmol), 3a (1 mmol), thioglycolic acid 4 (1.5 mmol), water (5 ml), catalyst (10 mol%), Reflux 1-12 h.

Entry Catalyst Temperature (°C) Time (h) Yieldb (%)
1 Sulfamic acid Reflux 8 20
2 Sulfanilic acid Reflux 7 45
3 p-TSA Reflux 9 30
4 β-cyclodextrin-SO3H Reflux 1 80
5 Hydrochloric acid Reflux 7 50
6 Piperidine ammonium acetate Reflux 11 30
7 Pyrrolidine ammonium acetate Reflux 10 38

aReaction conditions: 2a (1 mmol), 3a (1 mmol), thioglycolic acid 4 (1.5 mmol), water (5 ml), catalyst (10 mol %), bIsolated yield.

Table 3. Screening of catalyst for the model reaction (5a)a.

Entry Solvent (5 ml) Temperature (°C) Time (h) Yieldb (%)
1 Acetic acid Reflux 11 45
2 DMF Reflux 12 30
3 Methanol Reflux 11 40
4 Toluene Reflux 10 50
5 Ethanol Reflux 11 68
6 Isopropanol Reflux 10 38
7 Solvent- free  Reflux         1 98

a Reaction conditions: 2a (1 mmol), 3a (1 mmol), thioglycolic acid 4 (1.5 mmol), β-cyclodextrin-SO3H (10 mol %), bIsolated yield.

Table 4. Screening of solvents for the model reaction (5a)a.
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we examined the catalytic efficiency of β-cyclodextrin-SO3H in the absence of the solvent. The rate of the reaction increased 
substantially and the desired product 5a was obtained in higher yield 98% (Table 4). Thus, β-cyclodextrin-SO3H proved the most 
efficient acidic catalyst in terms of time and yield.

We like to mention here in solvent-free were the best choice and less time required for reaction completion. We decided 
to carry out the further reaction in solvent-free condition with β-cyclodextrin-SO3H catalyst (Scheme 5; Table 5). However, the 
reaction provides cleaner reaction, short reaction time, and the products were only required to be washed with ice-cold water. 
The yields are good to excellent. To assess the generality of this reaction, substrate scope was investigated under the optimized 
conditions; the results are listed in Table 5. The various aldehyde and anilines were cyclocondensed with thioglycolic acid to afford 
a variety of 4-thiazolidinones (Table 5). Aromatic aldehydes with electron withdrawing or donating substituents reacted very well, 
affording good to excellent yields of 4-thiazolidinones.

For reasons of economy, the stability and sustained activity of the catalysts are extremely important. Thus, recovery and 

 

R R’ 

2a=H 3a=H 

2b=3, 5-Dimethyl 3b=3, 5-Dimethyl 
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2d=4-Nitro 3d=4-Chloro 
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Scheme 5. Synthesis of 2-((substituted)-2-chloroquinolin-3-yl)-3-((substituted) phenyl) thiazolidin-4-one (5a-p)a.

Entry Compounds (2a-d) Compounds (3a-d) Product Time (h) Yieldb (%) M.P. (ºC)

1

NH2 NH2

5a 1 98 160-162

2

N

CHO

Cl

CH3

H3C
NH2

5b 2 96 220-222

3
N

CHO

Cl

Cl

NH2

5c 2 96 247-249

4

NH2 NH2

5d 3 97 131-133

Table 5. Physical data of 2-((substituted)-2-chloroquinolin-3-yl)-3-((substituted) phenyl)thiazolidin-4-one(5a-p)a.
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5

N

CHO

Cl

NH2

CH3

CH3

5e 3 94 212-214

6

N

CHO

Cl

CH3

H3C

NH2

CH3

CH3

5f 4 95 265-267

7

NH2

CH3

CH3

NH2

CH3

CH3

5g 5 96 204-206

8

N

CHO

Cl

O2N

NH2

CH3

CH3

5h 4 95 275-277

9

NH2

Cl
NH2

Cl
5i 4 95 110-112

10

NH2

Cl

NH2

Cl
5j 4 94 90-92

11
N

CHO

Cl

Cl

NH2

Cl
5k 5 95 278-280

12

N

CHO

Cl

O2N
NH2

Cl
5l 4 96 225-227

13 NH2Cl NH2Cl 5m 4 96 157-159
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14

N

CHO

Cl

CH3

H3C
NH2Cl 5n 5 96 160-162

15
N

CHO

Cl

Cl
N

CHO

Cl

O2N

5o 3 95 185-187

16

N

CHO

Cl

O2N

NH2Cl 5p 3 95 280-282

aReaction condition (5a-p): 2a-d (1 mmol), 3a-d (1 mmol), thioglycolic acid 4 (1.5 mmol), β-cyclodextrin-SO3H (10 mol %), reflux for 2-5 h, 
bIsolated yields.

Table 5. Physical data of 2-((substituted)-2-chloroquinolin-3-yl)-3-((substituted) phenyl)thiazolidin-4-one(5a-p)a.
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Scheme 6. Plausible reaction mechanism for the synthesis of thiazolidin-4-one.



e-ISSN:2319-9849 
p-ISSN:2322-00Research & Reviews: Journal of Chemistry

31J CHEM | Volume 6 | Issue 1 | January, 2017

reuse of β-cyclodextrin-SO3H in the model reaction were also studied. After completion of the reaction, the mixture was cooled to 
room temperature and ethyl acetate was added. The solid catalyst was isolated by filtration of the reaction mixture, washed with 
ethyl acetate, dried in an oven then reused for further catalytic cycles.

A plausible mechanism for the reaction is proposed as shown in Scheme 6. The catalyst β-cyclodextrin-SO3H activates to the 
aldehyde by increasing the electrophilicity of its carbonyl group to facilitate the formation of the imine intermediate (I). The anion 
of β-cyclodextrin-SO3H might enhance the nucleophilicity of the mercapto group of thioglycolic acid, causing its facile addition to 
the imine intermediate generated in situ. The β-cyclodextrin-SO3H then activates the carbonyl group of acid of intermediate (II), 
leading to intramolecular cyclization then dehydration to afford the thiazolidinone (III).

CONCLUSION
We have successfully developed a β-cyclodextrin-SO3H catalyzed an easy access to a new series of a facile one pot three 

component synthesis of 2-((substituted)-2-chloroquinolin-3-yl)-3-((substituted) phenyl) thiazolidin-4-one. This catalyst is highly 
active, mild reaction conditions, good to excellent yields, easy work-up, reused without significant loss of activity and easily 
available substrate make this reaction an attractive method for the preparation of compounds 5a-p. This procedure has many 
advantages over other methods, for example shorter reaction times, recycling and reuse of a heterogeneous biopolymer-based 
solid-acid catalyst, convenient one-pot operation, and simple experimental procedure.
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