
 ISSN(Online) : 2319 - 8753

ISSN (Print) : 2347 - 6710

 International Journal of Innovative Research in Science, Engineering and Technology

 Volume 3, Special Issue 3, March 2014

 2014 International Conference on Innovations in Engineering and Technology (ICIET’14)

 On 21st & 22nd March Organized by

 K.L.N. College of Engineering, Madurai, Tamil Nadu, India

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 1791

Abstract— Agile software development methodology is

becoming one of the widely used Software Development

methodologies because of its light weight methods and its

focus on customer satisfaction. Continuous Integration is

the only technique which is used in Agile, to ensure the

Software quality of the deliverable. It is the process of

integrating the new source code developed to the base

code, automated compiling, building the application and

running the tests. SCRUM is one of the most popular

Agile methodologies used in Software development. This

paper introduces the implementation of 3C Approach in

SCRUM. The 3C Approach adds Continuous

Measurement and Continuous Improvement as subsequent

activities to Continuous Integration, for ensuring quality.

Continuous Measurement is the process where the metrics

and measurements, which helps in the ensuring the

software quality of the deliverable, are considered. Agile

methodology emphasize on Agile metrics, which helps in

tracking the project success and customer satisfaction.

Metrics from Traditional methods will also be helpful, if

combined in the right way. So, in the Continuous

Measurement phase, along with Agile Metrics, traditional

metrics are also considered. Continuous Improvement

process helps in interpreting the measurement and metrics

for planning the improvement tasks for achieving better

Software Quality.

Keywords— Agile, Extreme Programming, SCRUM, 3C

Approach, Sprint

I.INTRODUCTION

Software organizations implement one of the software

development methodologies, which would help in the

planning and controlling the process of developing a

software product. Many models exist which helps in the

softwaredevelopmentprocess.Onethemtwawidelusedinma

nyofthsdevelopmenprojectsalmodelincsthesoftwareevelop

mentactivitilikplan,implncationandaintenanceinordahwi.1.

[2]Onlyafter each activity is finished, the next activity

will be initiated. And also, it is a heavy weight model

which required

 extensive documentation. [4] And, one of the major

disadvantages was, the requirements should be defined

at the start of the project. Hence, this model could not be

used where the requirements are constantly changing and

also not suitable for complex projects.

Agile is one of the software development

methodologies which is widely used in many of the small

and medium projects in software organizations. [13] It is a

group of software development methodologies which

includes SCRUM, Extreme Programming, LEAN etc. It is

also an iterative and incremental development

methodology. Agile allows changes in the requirements

for developing a software, which results in the

improvement of the project efficiency, productivity etc.

Scrum is one of the Agile software development

methodologies used in many of the software organizations

for software or product development[14]. Scrum accepts

the fact that there will be change in requirements, change

in technology etc. Scrum can effectively increase the

efficiency of the project by effectively collaborating

between the teams and also focuses on delivering a high

quality product on-time.

The 3C Approach for Agile Scrum

Software Methodology
Jisha Johns, Akhil P Sivan, Prof. K Balachandran, Prof. B R Prathap

Dept of Computer Science & Engineering, Christ University Faculty of Engineering, Bangalore, India.

Dept of Computer Science & Engineering, Christ University Faculty of Engineering, Bangalore, India.

Dept of Computer Science & Engineering, Christ University Faculty of Engineering, Bangalore, India.

Dept of Computer Science & Engineering, Christ University Faculty of Engineering, Bangalore, India.

The 3C Approach in Agile Scrum Software Methodology

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 1792

Fig. 1 Waterfall model

A sprint or iteration in Scrum, is the duration that is

fixed in advance and is normally one week to four weeks.

The three roles in Scrum: the product owner, the Scrum

Team and the Scrum Master. [8] Each sprint is started by

a Sprint planning meeting where the Product Owner, the

Scrum Master and the management team participates and

the user stories for the sprint are identified. The Scrum

Master and the scrum team identifies the tasks, resources

and the effort required to deliver those user stories. Once

the stories are finalized, there will not be any re-

prioritization or changing the scope of the user stories[6].

During the Sprint, there will be Stand Up meetings daily,

where the Scrum Master and the Scrum Team (others may

attend the meeting) discuss the progress of the user stories

and the impediments/blockers are identified.
The daily Stand Up meetings or the Scrum Meetings

are one of the essential component of Scrum. [5] The

Sprint Review Meeting, at the end of the Sprint, is where

the Scrum Master would review the project progress,

demonstrate the features that were developed, to the

Product Owner. The sprint is ended by a sprint

retrospective meeting. In this meeting, the progress is

reviewed and lessons learnt from this sprint are identified,

that could be implemented in the next sprint[15].

Scrum emphasizes on delivering the working product at

the end of the Sprint - a product/application that is

integrated, fully tested and potentially deliverable.

Extreme Programming (XP) is another agile software

development methodology, which includes several

iterations that ends with releasing a product with zero or

fewer defects. This methodology is intended for

delivering high-quality software more productively.

II.THE 3C APPROACH

Continuous Integration is the only activity in Agile

that ensures that the software product delivered is of high

quality. Continuous Integration phase involves the process

of integrating the new source code into the base code,

which the developer has developed and also includes

compiling, build & test execution[7]. Continuous

Integration is common for any agile development

methodology.

Continuous Integration is usually done by Continuous

Integration Engines - JUnit Framework, Apache Maven

etc. for Java applications. The developer will commit the

code in his Integrated Development Environment (IDE)

after implementation. These CI engines will check the

Version Control Systems like Subversion/SVN,

Concurrent Version System/CVS etc. for any new

committed source code. If new Source Code is found, the

Continuous Integration Engine compiles, builds the

application and runs the tests.

The 3C Approach introduces a subsequent activity

called Continuous Measurement to measure Software

Metrics. Metrics is one of the key aspects of every

software development process. Software metrics help in

tracking project progress, achieving quality assurance,

tracking project performance, estimating the project cost

etc. It also helps in quantifying the size or complexity of

the project, the number of defects reported etc.[12]

Agile software development methodologies rely on

agile metrics in assessing whether the quality

requirements and customer needs have been met. Agile

metrics focus on the project success and customer

satisfaction.

In the Agile projects, metrics that are used in the

traditional methods are not considered. Traditional

metrics focus on measuring the productivity and the

quality of the software product. Agile projects would

benefit, if traditional metrics and measurement

approaches and Agile metrics are combined in the right

way. But integrating the traditional Quality Assurance

metrics and approaches into Agile Processes is the biggest

challenge.

Traditional metrics like Lines of Code (LOC), coding

standard violations etc. could also be measured in Agile

projects. For measuring traditional Metrics in Java, many

tools like FindBugs, PMD and Checkstyle can be

integrated into Continuous Integration Engines. FindBugs

is for detecting potential programming mistakes,

Checkstyle for finding violations of Coding Standards and

PMD is a hybrid-version of FindBugs & Checkstyle. For

measuring the LOC, many tools like LocMetrics, CLOC

etc. could be used. But measuring the LOC would be of

more benefit in Agile Extreme Programming, since it

could be more useful in the case of maintenance projects.

Also some of the Agile metrics - the number of tests

and the test coverage could be measured during the testing

process. The test coverage could be measured using many

tools like Cobetura, Sonar etc. This is a helpful metric in

agile frameworks like Scrum, Extreme programming etc.

With the number of tests and the Lines of Code (LOC) the

Test-Growth-Ratio could be calculated. The Test-Growth-

Ratio has much significance in maintenance projects,

where testing is given more importance. And the number

of broken builds is also a helpful metric in ensuring the

software quality[16].

The measurement results can be put into graphs, which

helps in analyzing the changes of the measures/metrics

and software quality over time. This will help in deriving

the right improvement steps and also in assuring software

quality of the product.

The 3C Approach introduces another activity called

Continuous Improvement along with Continuous

Integration and Continuous Measurement. This process

helps in the interpretation of the measurement results from

the graphs and also helps in the planning of improvement

tasks for achieving better Software Quality[8].

The 3C Approach in Agile Scrum Software Methodology

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 1793

III.THE 3C APPROACH IN SCRUM

The 3C Approach in Scrum also has the three activities

as mentioned above – Continuous Integration, Continuous

Measurement and Continuous Improvement.

As explained above, Continuous Integration is the

integration of new source code developed by the

developer to the base code, along with automated

compiling, building the application and executing the

tests. Many Continuous Integration Engines like JUNIT,

Apache Maven etc. could be used, which continuously

checks the version control systems for any new code that

is available. These CI Engines would retrieve the new

code, compiles it, builds the application and runs the

test[9].

IDE
Version Control System Continuous Integration

Coding Standards

and refactoring

Reviews & Pair

programming

Fig 2. Continuous Integration

Continuous Measurement measures the software

quality of the deliverable with the help of metrics.

IDE Version Control System Continuous Integration

Coding Standards

and refactoring

Reviews & Pair

programming

Reports

Fig 3. Continuous Measurement

The Continuous Integration Engines could provide

some of the Agile Metrics like number of tests, Test

Coverage, number of broken builds etc. The Test

Coverage can be measured using many tools like

Cobertura, Sonar etc. which are plugins and could be

integrated with the CI Engines.

Some of the Agile metrics that would help in

quantifying the quality of the product as well as the

project progress are:

1) Number of Tests: The Number of Tests is a helpful

Agile Metric and could be provided by the CI Engines.

Although, the total number of tests has little significance

in Agile, it provides first insights like LOC does in the

context of complexity.[1]

2) Test-Coverage: The Test-Coverage is also an Agile

Metric which measures how much of the Source Code is

covered during Test Execution. For measuring the Test-

Coverage, Line-Coverage and Branch-Coverage are

considered. Line-Coverage measures the Lines of Code

that has been covered whereas Branch-Coverage measures

the code based on the number of branches like if-else

statements[14]. The Test-Coverage helps in quantifying

the percentage of the source code that is tested by the Test

Suite. The Test Coverage should be 80% to 90% for any

projects in the Software Industry.

Test Coverage = Code covered by the tests / Complete

code with 0 ≤ Test Coverage ≤ 1[1]

3) Test-Growth-Ratio: Test-Growth-Ratio is also an

Agile Metric which has more significance in development

projects than maintenance projects. The number of Tests

should increase when the Source Code increases unless

code refactoring has been done. In that case, number of

Tests may decrease, after removing the functionalities

which are not needed anymore.

Test-Growth-Ratio = Δ Tests / Δ Source Code with

(usually) Δ Source Code ≥ 0, Δ Tests ≥ 0[1]

4) Number of Broken Builds: Continuous Integration

Engine integrates the new source code to the base code. A

build is counted as a ‗Broken Build‘, when it fails. A

broken Build has much significance in Agile because it

shows that the code developed has not met the required

Quality Requirement. A Broken Build might be a

potential defect which could fail after the release to the

customer.

Fig 4. Burn-down Chart

5) Sprint Burn-down: Sprint Burn-down is one of the

Agile metrics, that is very helpful in tracking the effort

burn-down of each Sprint on a daily basis.The burn-down

shows the remaining effort that has to be burnt in Sprint,

how much effort has been logged so far, required burn

down rate etc. Since this chart provides daily feedback on

the effort, traditional metrics like Effort overrun could be

tracked early in the Sprint and mitigations can be planned

early rather than waiting till the end.

6) Sprint Velocity: Sprint Velocity is a powerful Agile

Metric. It helps in identifying the volume of work that

could be completed in each sprint with the available team

capacity.

Sprint Velocity = Total Effort Available for each Sprint /

Total Story points of that Sprint.

The 3C Approach in Agile Scrum Software Methodology

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 1794

7) Release burn-up: Release burn-up is also one of the

agile metrics, in measuring the volume of work delivered

to the customer in terms of Story Points.

Fig 5. Release Burn-up chart

Along with the Agile Metrics, some of the traditional

metrics that could be taken into account are:

 Coding Standard Violations

 Violations from Static Code Check

 Review Effectiveness

 Defect Removal Efficiency

 Test Metrics

The above metrics would help in determining the

measures for reducing the defects over time.

1) Coding Standard Violations: Tools like

CheckStyle, PMD etc. could be integrated with the IDE

(Eclipse & NetBeans for Java Applications), would help

the developer to identify the violations before committing

the code to the version control systems. This will prevent

the release of deliverable to the customer with critical

violations.

2) Violations from Static Code Checks: Tools like

FindBugs, PMD etc. could be integrated with the IDE

(Eclipse & NetBeans for Java Applications), would help

the developer to detecting potential programming

mistakes and could be fixed by the developer before

committing the code. This will prevent the release of the

deliverable to the customer with critial violations. PMD is

a hybrid-version of FindBugs and CheckStyle[11].

3) Review Effectiveness: The Review Effectiveness

measures how effective the review methods implemented

in the project are, in detecting the defects. Code reviews

or peer reviews help in identifying the defects in advance,

potential mistakes made by the developer and also, helps

in determining whether the code developed by the

developer is according to the requirement.

There are many review application tools available -

Crucible, Collaborator etc., which would help in

integrating the code review into the development process.

[3]

Review Effectiveness = Total number of defects found

before releasing the user stories for testing in each Sprint /

Total Number of defects of that Sprint

Fig 6. Review Effectiveness graph

4) Defect Removal Efficiency: This is also a

traditional metric which could be incorporated in the

Agile process. The Defect Removal Efficiency (DRE)

measures how effective the defect removal methods are,

which in turn determines the quality of the product.

Fig 7. Defect Removal Efficiency graph

Defect Removal Efficiency = Total number of defects

found internally (before the releasing the user stories) of

each Sprint / Total Number of defects of that Sprint

5) Test Metrics: It is also one of the traditional

metrics which helps to quantify the effectiveness of the

testing. It focuses on identifying the quality defects of the

deliverable. It helps in identifying the number of test cases

that are passed while testing, number of test cases failed

and how effective the testing methods are in finding the

defects. The inputs for Test Metrics are Number of Test

cases prepared for each user story. Test Metrics include:

a) Pass Rate: In scrum, the Pass Rate helps to

identify the Number of Test cases that are successfully

executed for each user story.As we move from one Sprint

to another, there should be a increasing trend for this

metric.

Pass Rate = Total number of Test Cases passed for all

user stories in that Sprint / Total Number of Test cases for

that Sprint

b) Fail Rate: In Scrum, the fail rate helps to identify

the Number of Test cases that are failed in the Test

Execution for each user story. As we move from one

Sprint to another, there should be a decreasing trend for

this metric.

The 3C Approach in Agile Scrum Software Methodology

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 1795

Fail Rate = Total number of Test Cases failed for all the

user stories in the Sprint / Total Number of Test cases for

that Sprint

c) Test Effectiveness: Test Effectiveness helps to

measure the effectiveness of the testing in identifying the

defects. This will help in measuring how effective the test

cases are in finding the defects.

Test Effectiveness = Total number of test cases that

resulted in defects for each Sprint / Total number of test

cases for that Sprint.

All the metrics mentioned above, could be measured

Sprint-wise which will help in identifying the

improvement steps for the next Sprint.

In the Continuous Measurement phase, these

measurement results are put into graphs which helps in

identifying the change of measures of each Sprint[14].

 In the Continuous Improvement Phase, the metrics

from the Continuous Integration Phase are analyzed to

decide on the improvement steps.

IDE Version Control System Continuous Integration

Coding Standards

and refactoring

Reviews & Pair

programming

Continuous

measurement

Quality Manager

Continuous improvement

Fig 8. Continuous Improvement

New thresholds could be defined for certain metrics or

could add new metrics to be measured in the next sprint or

new tools could be introduced.

The GQM (Goal-Question-Metric) Approach is used

for determining whether new metrics, tools or new

thresholds should be introduced which will help and also

to deduce necessary improvement steps. The

improvement process does not only lead to selective

improvements but to automated quality gates to preserve

the improvements enduringly. [1]

IV.CONCLUSION

Agile Software Development Methodology is being

widely used in many software organizations since it

focuses on assessing the project progress throughout the

development lifecycle and also helps in delivering the

right product to the customer. Agile metrics focuses on

planning or understanding the project progress and

customer satisfaction whereas Traditional Metrics focuses

more on productivity and Software Quality. Metrics that

were used in the Traditional models could be used along

with Agile Metrics, which would be very helpful in

determining the improvement steps that could be

implemented in the upcoming Sprints. Using this 3C

Approach, the project could significantly improve the

quality of the deliverable. The metrics collected in the

Continuous Measurement Phase will help in identifying

the needed improvement activities as part of the

Continuous Improvement activity via the GQM

Approach.

REFERENCES

[1] André Janus, Andreas Schmietendorf, Reiner Dumke, Jens Jäger,

‖ The 3C Approach for Agile Quality Assurance‖, 2012 IEEE

[2] Duka D, ―Adoption of Agile Methodology in Software
Development‖, 2013 IEEE

[3] Murphy, B., Bird, C., Zimmermann, T., Williams, L.,

Nagappan, N., Begel, A., ―Have Agile Techniques been the Silver
Bullet for Software Development at Microsoft‖, 2013 IEEE

[4] Khalane, T., Tanner, M., ―Software quality assurance in Scrum:

The need for concrete guidance on SQA strategies in meeting
user expectations‖, 2013 IEEE

[5] Tomohiro Hayata, Jianchao Han, ―A Hybrid Model for IT Project

with Scrum‖, 2011 IEEE
[6] Mirnalini k, Venkata R Raya, ―A software Development

Approach for Quality Software‖, 2010 IEEE

[7] K. Beck, et aI., Manifesto for Agile Software Development,
2001.www.agilemanifesto.org/

[8] Ken Schwaber , "Agile Project Management with Scrum"

[9] Ken Schwaber and Mike Beedle, ―Agile Software Development
with Scrum‖

[10] H. Landim, A. Albuquerque and T. Macedo, ―Procedures and

conditions that influence on the efficiency of some agile
practices‖, 2010 IEEE

[11] J. Cho and R. Huff, MANAGEMENT GUIDELINES FOR

SCRUM AGILE SOFTWARE DEVELOPMENT PROCESS,
Issues in Information Systems, Volume XII, No. 1, pp. 213-223,

2011

[12] Jeffrey A. Livermore, ―Factors that impact implementing an
Agile Software Development Methodology‖, IEEE 2007

[13] A. Ahmed, S. Ahmad, Dr. N. Ehsan, E. Mirza, S.Z. Sarwar,

―Agile Software Development:Impact on Productivity and
Quality‖, IEEE 2010

[14] Jiangping Wan, Weiping Luo, Xiaoyao Wan, ―Case Study on

Critical Success Factors of Agile Software Process
Improvement‖, pp. 628-631, IEEE 2011

[15] Vladan Devedzic and Sasa R. Milenkovic, ―Teaching Agile

Software Development: A Case Study‖, IEEE transactions on
education, May 2011

[16] Soundararajan S., Arthur J.D., Balci O., ―A Methodology for

Assessing Agile Software Development Methods‖, Agile
Conference(AGILE), 2012

