Research and Reviews: Journal of Engineering and Technology

The Influence of Three-Phase Auto-Reclosure of Transmission Line on the Dynamic Stability of Power Systems.

Onuegbu JC*, Ezennaya SO, and Onyedikachi S.

Department of Electrical Engineering, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria.

Research Article

Received: 03/06/2013
Revised: 13/06/2013
Accepted: 02/07/2013

*For Correspondence

Department of Electrical Engineering, Nnamdi Azikiwe University, Awka.

Keywords: Fault clearance, automatic regulation, switch-off angle, reclosure angle, retardation angle, dynamic stability

Abstract

For a functional power system, the influence of automatic re-closure on the dynamic stability was ascertained by comparing calculated coefficients of system reserves during auto re-closure and without auto re-closure. It is only successful reclosure that was considered using double circuit power line and unsymmetrical short circuit. At the end of the work, a diagram was drawn to illustrate the pick-up area A_{p} and the retardation area A_{r}. For the calculation of the pick-up, retardation and then the coefficient of dynamic stability, there is also the need to find the re-closure angle δ_{r} and the re-closure time t_{r} of the affected part. The dependence of re-closure angle on the re-closure time was tabulated. At the end of the investigation, coefficient of reserve of static stability k_{st} at both normal regime and after short circuit regime was compared and found to have ensured higher stability when equipped with auto-reclosure. Lastly, the graph of switch-off angle limit $\delta_{\text {lim }}$ versus switch off time limit $t_{\text {lim }}$ was plotted and the result corresponded to the expected parameters.

INTRODUCTION

The paper examines the need to install automatic re-closure switchgears on the transmission lines. Two generator power station, double circuit transmission line with load was chosen to carry out this research. A complex parametric analysis of the system was carried out in per unit for normal system regime, faulty regime and post fault regime. In each stage of the calculation, the impedances, the admittances and the various self- and mutual angles for both generator and load were clearly stated. The system power was calculated for the conditions of absence of auto re-closure system, presence of semi auto re-closure and presence of automatic re-closure. The dependence of switch off angle on the switch off time was also investigated for $0 \leq t \leq 0.15$ second. This clearly showed the transient behavior of the system, the speed up and the retardation angles and consequently the coefficient of dynamic stability for power system that is not equipped with automatic re-closure system as $\mathrm{K}_{\mathrm{r}}=1.4136$. The result changed appreciably when the system was equipped with automatic re-closure system as the retardation angle increased 103.83° thereby raising the coefficient of dynamic stability to 1.5599 . The fact that the coefficient of dynamic stability of the power system increased by 9.38 per cent when an automatic re-closure system was installed in the system shows that the installation of automatic re-closure system positively affects the dynamic stability of the power system.

Assumed input parameters used in the research work

Generator parameters

		$\underset{i}{\sum}$		苟		§		\pm ¢ ¢ ¢
1.	-	-	-	-	X ${ }_{\text {d }}$	X ${ }_{\text {d }}$	X	$C D^{2}$
2.	G_{1}	62.5	10.5	0.8	184	30	17.5	13.5
3.	G_{2}	75	10.5	0.8	161	28	18	8.85

$\begin{aligned} & \dot{i} \\ & \frac{\pi}{4} \\ & \stackrel{\sim}{\sim} \end{aligned}$			$\begin{aligned} & \geqslant \\ & \stackrel{\rightharpoonup}{0} \\ & \gg \end{aligned}$	
1.	T_{1}	63	121/10.5	10.5
2.	T_{2}	80	121/10.5	10.5
3.	T_{3}	40	115/38.5	17
4.	T_{4}	40	115/38.5	17
5.	T5	63	121/10.5	10.5

Transmission line parameters: Voltage $=110 \mathrm{KV}$,
Cos $\phi=0.90$, System voltage $\mathrm{V}_{\mathrm{s}}=35 \mathrm{KV}$, line length $=50 \mathrm{~km}$,
Short circuit line length (from source) $=15 \mathrm{~km}$,
System power $=50.4$ MW, Short circuit switch off time $t_{s w}=0.15 \mathrm{sec}$., re-closure time $t_{r}=0.1 \mathrm{sec}$.

Problem statement:

(1) To find static stability of the power system.
(2) To calculate dynamic stability of power system.
(3) To find the influence of auto re-closure on dynamic stability of transmission lines.

Calculation of system parameters

There are four sub-divisions of voltage level as can be seen from Fig.1.0. The calculation is done in per unit value taking the base values as $S_{b}=100 \mathrm{MVA}$ and $\mathrm{V}_{\mathrm{b}}=\mathrm{V}_{\mathrm{b}}=115 \mathrm{KV}$. The base values of the remaining sections are: $V_{b i}=\frac{V}{n_{1}}=\frac{115}{\frac{121}{10.5}}=9.98 \mathrm{KV}, V_{b i i i}=$ $38.5 K V, V_{\text {biv }} 9.98 K V$.

Generator G1: $X_{1}^{\prime}=X_{* d}^{\prime}=\frac{X_{d}^{\prime} \% * S_{b} *\left(V_{\text {rated }} / V_{b i}\right)^{2}}{100 * S_{\text {rated }}}$

$$
=\frac{184 * 100 *(10.5 / 9.98)^{2}}{100 * 62.5}=3.10
$$

Similarly, $X_{1}=0.531, X_{1}^{\prime \prime}=0.310$

Generator G2: $X_{3}^{\prime}=2.376, X_{3}=0.413, X_{3}^{\prime \prime}=0.266$

Transformers: $X_{2}=X_{* T 2}=\frac{V_{s c} \% * S_{b} *\left(V_{\text {rated }} / V_{b i}\right)^{2}}{100 * S_{\text {rated }}}$
$=\frac{10.5 * 100 *(121 / 115)^{2}}{100 * 63}=0.185$

Similarly, $X_{4}=X_{* T 2}=0.145, X_{7}=X_{8}=X_{* T 3}=0.425, X_{2}=X_{9}=0.185$, Fig. 2.0.

Line parameters $X_{* L 1}=X_{5}=X_{6}=X_{1 L} *\left(S_{b} / V_{b i i}{ }^{2}\right)=0.4 * 50 *\left(100 / 115^{2}\right)=0.151$, where per unit reactance of aluminium conductor is 0.4 ohm/km [1].

Short circuit inductances $X_{1 k}=(35 / 50) * 0.151=0.1057 ; X_{2 k}=(15 / 50) * 0.151=0.0453$, where $50 \mathrm{~km}=$ total line length and $15 \mathrm{~km}=s h o r t$ circuit line length.

Conversion of system and load parameters to base values

$V_{* s}=\frac{V_{s}}{V_{b i i i}}=\frac{35}{38.5}=0.909 ; P_{* s}=P_{s} / S_{b}=\frac{50.4}{100}=0.504$

Research\&
\rightarrow Reviews
Calculation of equivalent moment of inertia for the two generators
$G_{1}: T_{e * 1}=2.74 * \frac{C D^{2} n^{2}}{S_{b}} * 100=2.74 * \frac{13.5 * 3000^{2}}{100 * 10^{6}}=3.33$

Similarly, $T_{e * 2}=2.18$, and $T_{e * e q}=T_{e * 1}+T_{e * 2}=3.33+2.18=5.51$

Determination of reactive power of system and load

Load power is $54 \mathrm{MW}=(0.54+\mathrm{j} 0.235)$
$Q_{* S}=P_{* S} \sin \varphi_{L}=0.504 * \sin 25.84=0.220$ or
$Q_{* L}=0.235, w h e r e \cos \varphi_{L}=0.9$ or 25.84°

The next step is to simplify Fig. 2.0.
$X_{10}=\frac{X_{5}}{2}+\frac{X_{7}}{2}=\frac{j 0.151}{2}+\frac{j 0.425}{2}=j 0.288$
$X_{11}=\left(X_{1}+X_{2}\right) * \frac{X_{3}+X_{4}}{X_{1}+X_{2}+X_{3}+X_{4}}=$

Figure 1.0 Circuit diagram of transmission lines

Figure 2.0 Impedance diagram of the transmission lines shown in figure 1
$=(j 0.531+j 0.185) * \frac{j 0.413+j 0.145}{j 0.531+j 0.185+j 0.413+j 0.145}$
$=j 0.716 * \frac{j 0.558}{j 1.274}=j 0.314$

Figure 3.0 Simplified impedance diagram

Research\&
 OReviews

The total voltage at the system bus bar is $V_{a}=V_{a} \angle \delta_{a} ; V_{a}=\sqrt{ }\left(\left(V_{s}+\left(Q_{s} * \frac{X_{10}}{V_{s}}\right)\right)^{2}+j \frac{\left(P_{s} * X_{10}\right.}{}{ }^{2}\right)$
$=\sqrt{ }\left(\left(0.909+\left(0.22 * \frac{0.288}{0.909}\right)\right)^{2}+\mathrm{j}\left(0.504 * \frac{0.288}{0.909}\right)^{2}\right)=0.992 \angle 9.28 ;$ where $\delta_{a}=\arctan \left(\bar{Z}_{R}^{\underline{Y}}\right)$
Voltage at the load bus bar
$V_{L}=\sqrt{ }\left(\left(V_{a}-\left(Q_{L} * \frac{X_{9}}{V_{a}}\right)\right)^{2}+j \frac{\left(P_{L} * X_{9}\right)^{2}}{V_{s}}\right)$

$$
=\sqrt{ }\left(\left(0.992-\left(0.235 * \frac{0.185}{0.992}\right)\right)^{2}+\mathrm{j}\left(0.54 * \frac{0.185}{0.992}\right)^{2}\right)
$$

$=0.953 \angle 6.08^{\circ}$
Load impedance $Z_{\text {Load }}=\frac{V_{L}^{2}\left(P_{L}+j Q_{L}\right)}{S_{L}^{2}}=$
$0.953^{2} * \frac{0.54+j 0.235}{(0.54+j 0.235)^{2}}=1.414+j 0.615$

Loss of reactive power in the inductances of X_{9} and X_{10}
$\left.\Delta Q_{1}=\left(P_{L}^{2}+Q_{L}^{2}\right) * \frac{X_{9}}{V_{L}^{2}}=0.54^{2}+j 0.235^{2}\right) * \frac{0.185}{0.953^{2}}=0.07065$
$\Delta Q_{2}=\left(P_{S}^{2}+Q_{S}^{2}\right) * \frac{X_{10}}{V_{S}^{2}}=\left(0.504^{2}+j 0.22^{2}\right) * \frac{0.288}{0.909^{2}}=0.1054$

Over all power available in the system
$S_{0}=P_{0}+j Q_{0}=P_{S}+j Q_{S}+P_{L}+j Q_{L}+j \Delta Q_{1}+j \Delta Q_{2}$
$=0.504+j 0.22+0.54+j 0.235+j 0.07065+j 0.105=1.044+j 0.6307$

The power generated by the turbine is $P_{0}=1.044$
The e.m.f.: $\grave{E}=E^{\prime} \angle \delta_{0} ; E^{\prime}=\sqrt{ }\left(\left(V_{a}+Q_{0} * \frac{X_{11}}{V_{a}}\right)^{2}+j\left(P_{0} * \frac{X_{11}}{V_{a}}\right)^{2}\right)=\sqrt{ }\left(\left(0.992+0.6311 * \frac{0.314}{0.992}\right)^{2}+j\left(1.044 * \frac{0.314}{0.992}\right)^{2}\right)=\sqrt{ }(1.192)^{2}+j(0.33)^{2}=1.237$ $\arctan \left(\delta_{0}^{\prime}-\delta_{a}\right)=\frac{0.33}{1.192}=15.5^{\circ}$

The angle between emf E^{\prime} and system voltage $\left(V_{S}\right)$ is δ_{0}^{\prime}, where $\delta_{0}^{\prime}=9.28^{\circ}+15.5^{\circ}=24.78^{\circ}$

The synchronous emf $E_{q} \angle \delta_{0}^{\prime}$ will be defined. For this purpose, the schematic impedance diagram of Fig. 2.0 will be adjusted by replacing the transient reactance X_{d}^{\prime} of the generator with the synchronous reactance X_{d} value. Therefore Fig. 3.0 will express X_{12} as:
$X_{12}=X_{1}^{\prime}+X_{2} * \frac{X_{3}^{\prime}+X_{4}}{X_{1}^{\prime}+X_{2}+X_{3}^{\prime}+X_{4}}$
$=3.10+0.185 * \frac{2.376+0.145}{3.10+0.185+2.376+0.145}=j 1.456$
$E_{q}=\sqrt{ }\left(\left(V_{a}+\left(Q_{0} * \frac{X_{12}}{V_{a}}\right)\right)^{2}+j \frac{\left(P_{0} * X_{12}\right)^{2}}{V_{a}}\right)$

$$
=\sqrt{ }\left(\left(0.992+\left(0.631 * \frac{1.456}{0.992}\right)\right)^{2}+\mathrm{j}\left(1.044 * \frac{1.456}{0.992}\right)\right)^{2}
$$

$=\sqrt{1.9182+j 1.532}=2.455$
$\arctan \left(\delta_{0}^{\prime}-\delta_{a}\right)=38.63^{\circ}$

The angle between emf E_{q} and system voltage V_{s} is $\delta_{1}^{\prime}=38.63^{\circ}+9.28^{\circ}=47.91^{\circ}$. Voltage V_{G} on the busbar of the equivalent diagram of generator excluding the generator resistance is represented by Fig. 2.0.
$X_{13}=X_{2} * \frac{X_{4}}{X_{2}+X_{4}}=0.185 * \frac{0.145}{0.185+0.145}=j 0.081$
$V_{G}=\sqrt{ }\left(\left(V_{a}+\left(Q_{0} * \frac{X_{13}}{V_{a}}\right)\right)^{2}+j \frac{\left(P_{0} * X_{13}\right)^{2}}{V_{a}}\right)$
$=\sqrt{ }\left(\left(0.992+\left(0.6307 * \frac{0.081}{0.992}\right)\right)^{2}+\mathrm{j}\left(1.044 * \frac{0.081}{0.992}\right)^{2}\right)=1.047 \angle 4.65^{\circ}$
$\delta_{S}^{\prime}-\delta_{a}=4.65^{\circ} ; \delta_{S}=4.65+9.28=13.93^{\circ}$

Calculation of self and mutual conductance at normal regime applying Fig. 3.0

Mutual impedance $Z_{12}=j 0.185+1.414+j 0.615=1.414+\mathrm{j} 0.80$
a) Without auto regulation of excitation system the self inductance Z_{11}^{\prime} will be:

$$
Z_{11}^{\prime}=j X_{12}+j X_{10} * \frac{Z_{12}}{j X_{10}+Z_{12}}
$$

$=(j 1.456+j 0.288) *(1.414+j 0.80) /(j 0.288+1.414+j 0.80)=1.717 \angle 89.07^{\circ}$

The corresponding self impedance angle $\alpha_{11}^{\prime}=90^{\circ}-89.07^{\circ}=0.93^{\circ}$
Self admittance of the circuit $y_{11}^{\prime}=\frac{1}{1.717} \angle 89.07^{\circ}=0.58 \angle-89.07^{\circ}$

Mutual impedance of the current
$Z_{12}^{\prime}=j X_{12}+j X_{10}+\frac{X_{10 * j X_{12}}}{Z_{12}}$
$j 1.456+j 0.288+\frac{j 0.288 * j 1.456}{1.414+j 0.80}=1.633 \angle 82.08^{\circ}$

The corresponding mutual admittance angle
$\alpha_{12}^{\prime}=90^{\circ}-82.08^{\circ}=7.92^{\circ}$

Mutual admittance $y_{12}^{\prime}=\frac{1}{1.633} \angle 82.08^{\circ}=0.612 \angle-82.08^{\circ}$
b) With the presence of semi-automatic excitation regulator, the impedance becomes:
$Z_{11}^{\prime}=j X_{11}+j X_{10} * \frac{Z_{12}}{j X_{10}+Z_{12}}=j 0.314+(j 0.288 *(1.414+j 0.80)) /(j 0.288+1.414+j 0.80)=0.575 \angle 86.32^{\circ}$
The corresponding angle $\alpha_{11}^{\prime}=90^{\circ}-86.32^{\circ}=3.68^{\circ}$
Self admittance $y_{11}^{\prime}=\frac{1}{0.575} \angle 86.32=1.739 \angle-86.32^{\circ}$
Mutual impedance $Z_{12}^{\prime}=j X_{11}+j X_{10}+\frac{j X_{10} * X_{11}}{Z_{12}}$
$=(j 0.314+j 0.288)+\frac{j 0.288 * j 0.314}{(1.414+j 0.80)}=0.577 \angle 85.18^{\circ}$
$\alpha_{12}^{\prime}=90^{\circ}-85.18^{\circ}=4.42{ }^{\circ} ; y_{12}^{\prime}=\frac{1}{0.577} \angle 85.18^{\circ}=1.733 \angle-85.18^{\circ}$
c) With the presence of automatic excitation regulator:
$Z_{11}^{\prime}=j X_{13}+j X_{10} * \frac{Z_{12}}{j X_{10}+Z_{12}}=(j 0.081+j 0.288) *(1.414+j 0.80) /\left(j 0.288+(1.414+j 0.80)=0.342 \angle 85.34^{\circ}\right.$

The corresponding self impedance angle $\alpha_{11}^{\prime}=90^{\circ}-85.34^{\circ}=4.66^{\circ}$

Research\&
OReviews
Self admittance of the circuit $y_{11}^{\prime}=\frac{1}{0.342} \angle 85.34^{\circ}=2.924 \angle-85.34^{\circ}$

Mutual impedance
$Z_{12}^{\prime}=j X_{13}+j X_{10}+\frac{X_{10 * j X_{13}}}{Z_{12}}$
$j 0.081+j 0.288+\frac{j 0.288 * j 0.081}{1.414+j 0.80}=0.362 \angle 88.02^{\circ}$

The corresponding mutual admittance angle
$\alpha_{12}^{\prime}=90^{\circ}-88.02^{\circ}=1.98^{\circ}$

Mutual admittance $y_{12}^{\prime}=\frac{1}{0.362} \angle 88.02^{\circ}=2.761 \angle-88.02^{\circ}$

Short circuit condition

In determining the shunt resistance created by one phase short circuit to ground, the diagram of Fig. 4.0 will be applied for reverse and zero sequences.

Figure 4.0 System reverse sequence impedance diagram

For reverse sequence, load resistance is taken as $0.35 Z_{\text {load }}$ [2], therefore:
$Z_{\text {load } 2}=0.35 * Z_{\text {load }}=0.35 *(1.414+j 0.615)=0.495+j 0.215$

Rearranging the diagram of Fig. 4.0, it becomes:

$$
\begin{gathered}
X_{14}=\frac{j X_{8}}{2}=\frac{j 0.425}{2}=j 0.213 \\
X_{15}=\left(X_{1}^{\prime \prime}+X_{2}\right) * \frac{X_{3}^{\prime \prime}+X_{4}}{X_{1}^{\prime \prime}+X_{2}+X_{3}^{\prime \prime}+X_{4}}=\frac{(0.31+0.185)(0.266+0.145)}{0.31+0.185+0.266+0.145}=j 0.225
\end{gathered}
$$

$Z_{13}=j X_{9}+Z_{\text {load } 2}=j 0.185+0.495+j 0.215=0.495+j 0.40$

Impedance transformation of figures 5 and 6
$Z_{14}=\frac{j X_{15} * Z_{13}}{j X_{15}+Z_{13}}=\frac{j 0.225(0.495+j 0.40)}{j 0.225+0.495+j 0.40}=0.039+j 0.175$
$X_{16}=X_{5} * \frac{X_{1 k}}{X_{5}+X_{1 k}+X_{2 k}}$
$=j 0.151 * \frac{j 0.045}{j 0.151+j 0.106+j 0.045}=j 0.053$
$X_{18}=X_{1 k} * \frac{X_{2 k}}{X_{5}+X_{1 k}+X_{2 k}}=j 0.016$

Figure $5.0 \Delta / \mathrm{Y}$ impedance conversion

Figure 6.0 Resultant impedance from Figure 5
$Z_{15}=Z_{14}+j X_{16}=0.039+j 0.288$
$X_{19}=X_{17}+j X_{14}=j 0.236$

The equivalent impedance of the reverse sequence relative to the short circuit is $Z_{\text {eq }}$.
$Z_{\text {eq }}=j X_{18}+j X_{19} * \frac{Z_{15}}{j X_{19}+Z_{15}}=j 0.016+\frac{j 0.236 *(0.039+j 0.228)}{j 0.236+0.039+j 0.228}=0.01+j 0.133$

Figure 7.0 Zero sequence impedance diagram

For transmission lines, zero sequence reactance is defined as $X_{0}=3 X_{1}$ [3]. Similarly, $X_{20}=3 X_{5} ; X_{21}=3 X_{1 k} ; X_{22}=3 X_{2 k} ; X_{23}=X_{2} * X_{4} /\left(X_{2}+X_{4}\right)=$ $0.0185 * 0.145 /(0.0185+0.145)=j 0.081$
$\mathrm{X}_{24}=\mathrm{j} \mathrm{X}_{7} / 2=\mathrm{j} 0.425 / 2=\mathrm{j} 0.213$ (Fig. 7.0).

Figure 8.0 Conversion of Δ / Y impedance diagram
$X_{25}=X_{20} * \frac{X_{21}}{X_{20}+X_{21}+X_{22}}$
$=j 0.453 * \frac{j 0.317}{j 0.453+j 0.317+j 0.136}=j 0.159$
$X_{26}=X_{20} * \frac{X_{22}}{X_{20}+X_{21}+X_{22}}$
$=j 0.453 * \frac{j 0.081}{j 0.453+j 0.317+j 0.136}=j 0.068$
$X_{27}=X_{21} * \frac{X_{22}}{X_{20}+X_{21}+X_{22}}$
$=j 0.317 * \frac{j 0.136}{j 0.453+j 0.317+j 0.136}=j 0.048$
$X_{28}=X_{23}+X_{25}=j 0.081+j 0.159=j 0.240$
$X_{29}=X_{24}+X_{26}=j 0.213+j 0.068=j 0.281$

The equivalent reactance of the zero sequence relative to the point of short circuit $K^{(1)}$ is defined as:
$X_{e q(0)}=X_{27}+X_{28} * \frac{X_{29}}{X_{28}+X_{29}}=j 0.048+j 0.24 * \frac{j 0.281}{j 0.24+j 0.281}=j 0.177$

The impedance of the power line at the point of short circuit is:
$Z_{s h}^{(1)}=j X_{e q(0)}+Z_{\text {eq }}=j 0.177+0.01+j 0.133=0.01+j 0.31$

Abnormal regime

Calculation of system reactance for single line-to-ground short circuit at 15 km distance from source.

$$
\mathrm{X}_{33}=\left(\mathrm{X}_{1}+\mathrm{X}_{2}\right) * \frac{\mathrm{X}_{3}+\mathrm{X}_{4}}{\mathrm{X}_{2}+\mathrm{X}_{2}+\mathrm{X}_{3}+\mathrm{X}_{4}}=
$$

$(0.531+0.185) * \frac{0.413+0.145}{0.531+0.185+0.413+0.145}=\mathrm{j} 0.80$
$\mathrm{Z}_{16}=\mathrm{jX} \mathrm{X}_{9}+\mathrm{Z}_{\text {load }}=\mathrm{j} 0.185+1.414+\mathrm{j} 0.625=1.414+\mathrm{j} 0.80$

Figure 9.0 Abnormal regime impedance diagram
$X_{30}=X_{5} * \frac{X_{1 \mathrm{k}}}{\mathrm{X}_{5}+\mathrm{X}_{1 \mathrm{k}}+\mathrm{X}_{2 \mathrm{k}}}=\mathrm{j} 0.151 * \frac{\mathrm{j} 0.1057}{\mathrm{j} 0.151+\mathrm{j} 0.1057+\mathrm{j} 0.045}=\mathrm{j} 0.053$
$\mathrm{X}_{31}=\mathrm{X}_{5} * \frac{\mathrm{X}_{2 \mathrm{k}}}{\mathrm{X}_{5}+\mathrm{X}_{1 \mathrm{k}}+\mathrm{X}_{2 \mathrm{k}}}=\mathrm{j} 0.027$
RRJET | Volume 2 | Issue 3 | July - September, 2013
$\mathrm{X}_{32}=\mathrm{X}_{1 \mathrm{k}} * \frac{\mathrm{X}_{2 \mathrm{k}}}{\mathrm{X}_{5}+\mathrm{X}_{1 \mathrm{k}}+\mathrm{X}_{2 \mathrm{k}}}=\mathrm{j} 0.016$
$Z_{17}=Z_{s h}^{(1)}+X_{32}=0.01+j 0.31+j 0.016=0.01+j 0.326$
$X_{34}=j X_{31}+j X_{24}=j 0.027+j 0.213=j 0.240$

Figure 10.0 Equivalent generator circuit

Current quantity and its flow during abnormal regime Fig. 10
$V_{s}=0$, and $I_{3}=1.0 \angle 0^{\circ}$
$\dot{V}_{b}=\dot{I}_{3} * j X_{34}=j 0.240 ; \dot{I}_{5}=\frac{\dot{V}_{b}}{Z_{17}}=0.24 \angle 90 \% 0.326 \angle 88.24^{\circ}=0.736 \angle 1.76^{\circ}$
$\dot{I}_{2}=I_{3}+I_{5}=1.0+0.7357+j 0.0226=1.736+j 0.0226$
$\dot{V}_{a}=\dot{V}_{b}+\dot{I}_{2} * j X_{30}=j 0.24+(1.736+j 0.0226) * j 0.053=0.332 \angle 89.8^{\circ}$
$\tilde{I}_{4}=\frac{\hat{V}_{a}}{Z_{16}}=\left(0.332 \angle 89.8^{\circ}\right) /(1.414+j 0.8)=0.101+j 0.177=0.204 \angle 60.3^{\circ}$
$\dot{I}_{1}=\dot{I}_{4}+\dot{I}_{2}=0.101+j 0.177+1.736+j 0.0226=1.848 \angle 6.21^{\circ}$

Input emf $E^{\prime}=\hat{V}_{a}+j X_{33} * I_{1}=0.332 \angle 89.8^{\circ}+0.314 \angle 90^{\circ} * 1.848 \angle 6.21^{\circ}=0.911 \angle 85.97^{\circ}$

Self impedance: $Z_{11}^{\prime \prime \prime}=\frac{E^{\prime}}{I_{1}}=0.911 \angle 85.97 \% 1.848 \angle 6.21^{\circ}=0.493 \angle 79.76^{\circ}$

Self admittance angle: $\alpha_{11}^{\prime \prime \prime}=90^{\circ}-79.76^{\circ}=10.24^{\circ}$
Self admittance: $y_{11}^{\prime \prime \prime}=\frac{1}{0.493 \angle 79.76^{\circ}}=2.028 \angle-79.76^{\circ}$
Mutual impedance $Z_{12}^{\prime \prime \prime}=\frac{E^{\prime}}{I_{3}}=0.911 \angle 85.97^{\circ} * \frac{1}{1.0} \angle 0^{\circ}=0.911 \angle 85.97^{\circ}$

Mutual impedance angle: $\alpha_{12}^{\prime \prime \prime}=90^{\circ}-85.97^{\circ}=4.03^{\circ}$

Mutual admittance: $y_{12}^{\prime \prime \prime}=\frac{1}{0.911 \angle 85.97^{\circ}}=1.098 \angle-85.97^{\circ}$

Self and mutual reactance after accidental regime

$\mathrm{X}_{35}=\left(\mathrm{X}_{1}+\mathrm{X}_{2}\right)\left(\mathrm{X}_{3}+\mathrm{X}_{4}\right) /\left(\mathrm{X}_{1}+\mathrm{X}_{2}+\mathrm{X}_{3}+\mathrm{X}_{4}\right)$
$(j 0.531+j 0.185) * \frac{j 0.266+j 0.145}{j 0.531+j 0.185+j 0.0 .266+j 0.145} \mathrm{X}_{36}=\mathrm{j} \mathrm{X}_{5}+\mathrm{X}_{7} / 2=\mathrm{j} 0.151+\mathrm{j} 0.425 / 2=\mathrm{j} 0.364$
$Z_{18}=j X_{9}+Z_{\text {load }}=1.414+j 0.80$, Fig. $11(b)$

Figure11(a) Reactances after accidental regime

Figurell(b) Equivalent diagram after accidental regime
Self impedance: $Z_{11}^{\prime \prime}=j X_{35}+\frac{j X_{36} * Z_{18}}{X_{36}+Z_{18}}=0.634 \angle 85^{\circ}$

Self admittance angle: $\alpha_{11}^{\prime \prime}=90^{\circ}-85^{\circ}=5^{\circ}$
Self admittance: $y_{11}^{\prime \prime}=\frac{1}{0.634 \angle 85}=1.577 \angle-85^{\circ}$

Mutual impedance: $Z_{12}^{\prime \prime}=j X_{35}+\frac{j X_{35}{ }^{*} X_{36}}{Z_{18}}=0.646 \angle 84.6^{\circ}$

Self admittance angle: $\alpha_{12}^{\prime \prime}=90^{\circ}-84.6^{\circ}=5.4^{\circ}$
Self admittance: $y_{12}^{\prime \prime}=\frac{1}{0.646 \angle 84.6^{\circ}}=1.548 \angle-84.6^{\circ}$

Determination of maximum power at normal regime
(a) Without automatic excitation regulator on generator
$P_{m 1}=E_{q}^{2} * y_{11}^{\prime} * \sin \alpha_{11}^{\prime}+E_{q} * V_{* s} * y_{12}^{\prime}=2.455^{2} * 0.58 * \sin 0.93^{\circ}+2.455 * 0.909 * 0.612=1.4225$
(b) With semi-automatic excitation regulator
$P_{m 2}=(E)^{2} * y_{11}^{\prime} * \sin \alpha_{11}^{\prime}+E^{\prime} * V_{* s} * y_{12}^{\prime}=1.237^{2} * 1.739 * \sin 3.68^{\circ}+1.237 * 0.909 * 1.733=2.1194$
(c) With automatic excitation regulator
$P_{m 3}=V_{G}^{2} * y_{11}^{\prime} * \sin \alpha_{11}^{\prime}+V_{G} * V_{* S} * y_{12}^{\prime}=1.047^{2} * 2.942 * \sin 4.66^{\circ}+1.047 * 0.909 * 2.761=2.8881$
6. Calculation of power characteristics at different regimes:

1) Maximum power at normal regime
$P_{m}^{\prime}=(E)^{2} * y_{11}^{\prime} \sin \alpha_{11}^{\prime}+E^{\prime} * V_{* 5} * y_{12}^{\prime} \sin \left(\delta^{\prime}-\alpha_{11}^{\prime}\right)$
$=1.237^{2} * 1.739 \sin 3.68^{\circ}+1.237 * 0.909 * 1.733 * \sin \left(\delta^{\prime}-4.42^{\circ}\right)=0.171+1.949 * \sin \left(\delta^{\prime}-4.42^{\circ}\right)=2.12$
2) Maximum power at faulty regime
$P_{m}^{\prime \prime \prime}=(E)^{2} * y_{11}^{\prime \prime \prime} \sin \alpha_{11}^{\prime \prime \prime}+E^{\prime} * V_{* s} * y_{12}^{\prime \prime \prime} \sin \left(\delta^{\prime}-\alpha_{12}^{\prime \prime \prime}\right)$
$=1.237^{2} * 2.028 \sin 10.24+1.237 * 0.909 * 1.098 * \sin \left(\delta^{\prime}-4.03^{\circ}\right)=0.552+1.235 * \sin \left(\delta^{\prime}-4.03^{\circ}\right)=1.787$
3) Maximum power after fault clearance
$P_{m}^{\prime \prime}=\left(E \oint^{2} * y_{11}^{\prime \prime} \sin \alpha_{11}^{\prime \prime}+E^{\prime} * V_{s s} * y_{12}^{\prime \prime} \sin \left(\beta^{\prime}-\alpha_{12}^{\prime \prime}\right)\right.$
$=1.237^{2} * 1.577 \sin 5^{\circ}+1.237 * 0.909 * 1.548 * \sin \left(\delta^{\prime}-5.4^{\circ}\right)=0.210+1.741 * \sin \left(\delta^{\prime}-5.4^{9}\right)=1.951$

Taking values of δ^{\prime} from 0° to 180°, the values of $P_{m}^{\prime}, P_{m}^{\prime \prime \prime}$, and $P_{m}^{\prime \prime}$ will be calculated as shown in Table 3.
Values of $P_{m}^{\prime}, P_{m}^{\prime \prime \prime}$, and $P_{m}^{\prime \prime}$ for δ^{\prime} from 0° to 180° Table 3.0

| δ^{\prime} degree | 0° | 30° | 60° | 90° | 120° | 150° | 180° |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| P_{m}^{\prime} | 0.021 | 1.013 | 1.779 | 2.114 | 1.929 | 1.273 | 0.321 |
| $P_{m}^{\prime \prime \prime}$ | 0.465 | 1.093 | 1.575 | 1.784 | 1.662 | 1.243 | 0.639 |
| $P_{m}^{\prime \prime}$ | 0.0 .046 | 0.935 | 1.629 | 1.943 | 1.793 | 1.219 | 0.374 |

Static stability at normal regime without auto-regulation of excitation
$K_{s t}=\left[\frac{P_{m 1}-P_{0}}{P_{0}}\right] * 100 \%=\left[\frac{(1.4225-1.044)}{1.044}\right] * 100 \%=36.25 \%$

Static stability at normal regime with semi-automatic regulation of excitation
$K_{s t}=\left[\frac{P_{m 2}-P_{0}}{P_{0}}\right] * 100 \%=\left[\frac{(2.1194-1.044)}{1.044}\right] * 100 \%=103 \%$

Static stability at normal regime with automatic regulation of excitation
$K_{s t}=\left[\frac{P_{m 3}-P_{0}}{P_{0}}\right] * 100 \%=\left[\frac{(2.8881-1.044)}{1.044}\right] * 100 \%=176.64 \%$

Static stability regime after fault clearance
$K_{s t}=\left[\frac{P_{m}^{\prime \prime}-P_{0}}{P_{0}}\right] * 100 \%=\left[\frac{(1.951-1.044)}{1.044}\right] * 100 \%=86.9 \%$

For three phase short circuit $P_{m}^{\prime \prime \prime}=0$ [4]. The limit of switch off angle δ lim of the short circuit is defined thus:
$\delta_{\text {lim }}=\left(P_{0} * \frac{\delta_{k}^{\prime}-\delta_{0}^{\prime}}{57.3^{\circ}}+P_{m}^{\prime \prime} \cos \delta_{k}^{\prime}\right) / P_{m}^{\prime \prime}$
$\frac{1.044 * \frac{147.65^{\circ}-24.78^{\circ}}{57.3^{\circ}}+1.951 * \cos 147.65^{\circ}}{1.951}=0.2543 \mathrm{rad}$. or 14.57°
where $\delta_{k}^{\prime}=180^{\circ}-\arcsin \left(\frac{P_{0}}{P_{m}^{\prime \prime}}\right)=180^{\circ}-\arcsin \left(\frac{1.044}{1.951}\right)=147.65^{\circ}$

The coefficient 57.3° converts degrees to radians.

Determination of switch off angle as a function of switch off time $\delta^{\prime}=f(t)$ can be drawn by taking intervals of $t=0.15$ at $\Delta t=0.05$ second.

First interval $\Delta t=0$ to 0.05 second

Electrical power given out at the first moment after the short circuit is $P_{m}^{\prime \prime \prime}=0$, this is because there will be no system voltage V_{s} during three phase short circuit. Power at the initial interval is $\mathrm{P}_{0}=1.044$. Increase in angle for this interval is:

Research\&
OReviews
$\Delta \delta_{1}^{\prime}=\frac{K * P_{0}}{2}=8.17 * \frac{1.044}{2}=4.27$, where $K=\frac{45}{T_{e * e q}}=\frac{45}{5.51}=8.17$ [5]. Angle at the first interval,
$\delta_{1}^{\prime}=\delta_{0}^{\prime}+\Delta \delta_{1}^{\prime}=24.78+4.27=29.05^{\circ}$

Second interval $\Delta t=0.05$ to 0.1 second, $\Delta P_{1}=P_{0}=1.044$
$\Delta \delta_{2}^{\prime}=\Delta \delta_{1}^{\prime}+K * \Delta P_{1}=4.27+8.17 * 1.044=12.799^{\circ}$
$\delta_{2}^{\prime}=\delta_{1}^{\prime}+\Delta \delta_{2}^{\prime}=29.05^{\circ}+12.799^{\circ}=41.85^{\circ}$

Third interval $\Delta t=0.1$ to 0.15 second, $\Delta P_{2}=1.044$ (switch off time)
$\Delta \delta_{3}^{\prime}=\Delta \delta_{2}^{\prime}+K * \Delta P_{2}=12.799+8.17 * 1.044=21.328^{\circ}$
$\delta_{3}^{\prime}=\delta_{2}^{\prime}+\Delta \delta_{3}^{\prime}=41.85+21.328=63.18^{\circ}$

Forth interval $\Delta t=0.15$ to 0.20 second, $\Delta P_{3}=1.044$ (first power imbalance)

For this interval, the switch off of the short circuit begins. The electrical power given out after the accident in the beginning of the forth interval will be:
$\Delta_{1} P_{3}^{\prime \prime}=C+D * \sin \left(\delta_{3}^{\prime}-\alpha_{12}^{\prime \prime}\right)=0.21+1.741 * \sin (63.18-5.4)=1.689$

Where $C=(E)^{2} * y_{11}^{\prime \prime} * \sin \alpha_{11}^{\prime \prime}=1.237^{2} * 1.577 * \sin 5^{\circ}=0.21$, and
$D=E^{\prime} * V_{* S} * y_{12}^{\prime \prime} * \sin \left(\delta^{\prime}-\alpha_{12}^{\prime \prime}\right)=1.237 * 0.909 * 1.548 \sin 84.6=1.7329$

Second power imbalance at the beginning of the forth interval
$\Delta_{2} P_{3}^{\prime \prime}=\mathrm{P}_{0}-\Delta_{1} P_{3}^{\prime \prime}=1.044-1.689=-0.645$

Increase in angle for this interval:
$\Delta \delta_{4}^{\prime}=\Delta \delta_{3}^{\prime}+K * \frac{\Delta P_{3}+\Delta_{2} P_{3}^{\prime \prime}}{2}=21.328^{\circ}+8.17 * \frac{1.044-0.645}{2}=22.958^{\circ}$

Angle at the end of the forth interval

$$
\delta_{4}^{\prime}=\delta_{3}^{\prime}+\Delta \delta_{4}^{\prime}=63.18^{\circ}+22.958^{\circ}=86.14^{\circ}
$$

Fifth interval at $\Delta t=0.2$ to 0.25 second
$P_{4}=C+D * \sin \left(\delta_{4}^{\prime}-\alpha_{12}^{\prime \prime}\right)=0.21+1.7329 * \sin \left(86.14^{\circ}-5.49=1.9203\right.$

$$
\Delta P_{4}=P_{0}-P_{4}=1.044-1.930=-0.886
$$

$\Delta \delta_{5}^{\prime}=\Delta \delta_{4}^{\prime}+K * \Delta_{2} P_{3}^{\prime \prime}=22.958^{\circ}+8.17 *(-0.645)=15.72^{\circ}$
$\delta_{5}^{\prime}=\delta_{4}^{\prime}+\Delta \delta_{5}^{\prime}=86.14^{\circ}+15.72^{\circ}=103.83^{\circ}$

Results of $\delta^{\prime}=\mathrm{f}(\mathrm{t})$
Table 4.0
$\begin{array}{lllllll}\mathrm{t} \text {, second } & 0 & 0.05 & 0.10 & 0.15 & 0.20 & 0.25\end{array}$
δ^{\prime} degree 24.7829 .0541 .8563 .1886 .14103 .83

Table 4.0 is illustrated in Fig. 12.0, showing ($\delta_{0}^{\prime}=24.789$ angle between the emf and the system voltage. $\delta_{s w}^{\prime}=\delta_{3}^{\prime}=63.18{ }^{\circ}-$ the switch off angle at $\mathrm{t}=0.15$ second. $\delta_{r}^{\prime}=\delta_{5}^{\prime}=103.83^{\circ}$ - retardation angle at the elapsed time (re-closure angle).

Speed up area A_{p} and possible retardation area A_{r} are defined in Fig. 13.0
$A_{p}=P_{0} * \frac{\delta_{s w}^{\prime}-\delta_{0}^{\prime}}{57.3^{\circ}}=1.044 * \frac{63.18^{\circ}-24.78^{\circ}}{57.3^{\circ}}=0.70$
$A_{r}=P_{0} * \frac{\delta_{k}^{\prime}-\delta_{s w}^{\prime}}{57.3^{\circ}}+P_{m}^{\prime \prime}\left(\cos \delta_{k}^{\prime}-\cos \delta_{s w}^{\prime}\right)=1.044 * \frac{147.65^{\circ}-63.18^{\circ}}{57.3^{\circ}}+1.951 *\left(\cos 147.65^{\circ}-\cos 63.189\right)=-0.9895$
Reserved coefficient of dynamic stability of the power system $\left(\mathrm{K}_{\mathrm{r}}\right)$ is defined as $K_{r}=\left|A_{r}\right| / A_{p}=\frac{-0.9895}{0.7}=1.4136$

Figure 13.0 Dynamic stability curve

The influence of a successful auto-reclosure on the dynamic stability of the system has been presented. From table 4 , it is seen that reclosure angle δ_{r}^{\prime} is equal to 103.83° and reclosure time is 0.1 second. Therefore, the retardation areas before $A_{r 1}$ and $A_{r 2}$ can be defined as stated below. These parameters can be used to define the coefficient of dynamic stability of the system through the influence of auto-reclosure equipment installed on the power system.
$A_{r 1}=P_{0} *\left(\delta_{r}^{\prime}-\delta_{s w}^{\prime}\right) * \frac{1}{57.3}+P_{m}^{\prime \prime}\left(\cos \delta_{r}^{\prime}-\cos \delta_{s w}^{\prime}\right)=1.044 * \frac{103.83^{\circ}-63.18^{\circ}}{57.3^{\circ}}+1.951 *\left(\cos 103.83^{\circ}-\cos 63.189\right)=-0.606$

$$
\delta_{k}^{\prime}=180^{\circ}-\arcsin \left(P_{0} / P_{m}^{\prime \prime}\right)=180^{\circ}-\arcsin (1.044 / 1.951)=147.65^{\circ}
$$

$A_{r 2}=P_{0} * \frac{\delta_{k}^{\prime}-\delta_{r}^{\prime}}{57.3}+P_{m}^{\prime} *\left(\cos \delta_{k}^{\prime}-\delta_{r}^{\prime}\right)=1.044 * \frac{147.65^{\circ}-103.83^{\circ}}{57.3^{\circ}}+2.12 *\left(\cos 147.65^{\circ}-\cos 103.839\right)=-0.4858$

Finally, the coefficient of dynamic stability of the system $K_{r}=\left(\left|A_{r 1}+A_{r 2}\right|\right) * \frac{1}{A_{p}}=\frac{0.606+0.4858}{0.70}=1.5597$

CONCLUSION

As a result of the presence of automatic re-closure system on the power line, the re-closure angle was improved to 147.65°. Consequently, the coefficient of dynamic stability was raised to 1.5597 as compared with the 1.4136 earlier obtained after fault clearance. This result proves that the reserve of dynamic stability with auto re-closure in the system is more than when there is no
auto re-closure system on the transmission line. Therefore, a successful automatic re-closure of transmission lines positively influences the dynamic stability of power systems.

REFERENCES

1. Rodjkova LD, Kozulin VS. Electrical equipment of power stations and substations. M Energoatomizdat. 1987:141.
2. Ulianov SA. Electromagnetic transient processes in electrical systems. M. Energia, 1970.
3. Venikov VA. Transients in electromechanical processes in electrical systems. M. Vishaya Shkola, 1970.
4. Venikov VA. Transients in electromechanical processes in electrical systems. M. Vishaya Shkola, 1970.
5. Ulianov SA. Electromagnetic transient processes in electrical systems. M. Energia, 1970.
