
62

Research & Reviews: Journal of Microbiology and 
Biotechnology

e-ISSN:2320-3528
p-ISSN:2347-2286

RRJMB | Volume 4 | Issue 3 | July-September, 2015

INTRODUCTION
Microbial symbionts were special microorganisms that long-term live together with the host. The hosts provide suitable 

environment and nutrients for symbiotic bacteria [1-4]. The symbiotic bacteria may provide host with essential amino acids and other 
nutrients by biosynthesis [5,6], the symbiotic bacteria can also help the host to degrade hazardous substances [7,8]. Insect symbiotic 
bacteria play important roles in the growth, development, food digestion, nutrient absorption and environmental adaptation of 
host insects [9-12]. In addition, the symbiotic bacteria spread through the cytoplasm of eggs to regulate the growth and ovarian 
development of the insect host was also reported [13,14].

Wolbachia was one of the most known symbiotic bacteria found in insect hosts [15].The infection rate of Wolbachia in insects, 
mites, crustaceans and nematodes [16,17] is common [18-20] Weinert et al. [21] reported the diversity and incidence of bacterial 
symbionts in ladybird beetles, and conclude that Rickettsia, Wolbachia and Spiroplasma were all can be found among ladybird 
beetles. Kikuchi and Fukatsu (2003) explored the presence of Wolbachia in Heteroptera bug and revealed several novel lineages 
of Wolbachia. Pike and Kingcombe (2009) revealed that Wolbachia was responsible for a huge variety of reproductive peculiarities. 
Wolbachia in Drosophila species also caused cytoplasmic incompatility [22], and in Aedes albopictus accelerated cytoplasmic drive 
[23]. In addition, Wolbachia in D. melanogaster had significantly favorable effects on survival rate and fecundity [24]. Besides, the 
reproduction [25] and population conformity [26], the egg and larval survival rate [27, 28] were also enhanced by Wolbachia. Because 
of Wolbachia's ability to alter host reproduction, Wolbachia may have potential application in biological control.

Geocoris pallidipennis (Costa) is one of important predaceous insects in Hemiptera, Lygaeidae. It is one of important natural 
enemies of many insect pests and it can prey on woolly aphids, leafhopper, cotton bollworm eggs and small larvae of Lepidoptera. 
Zheng and Dong (1996)[29] found out that G. pallidipennis is one of the main natural enemies for controlling insect pests in cotton 
fields. A few characteristics of morphology, biology, ecology and predaceous function of G. pallidipennis were reported [30,31]. 
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However, no interaction of Wolbachia and G. pallidipennis is reported. The goal of the study was to characterize the microbial 
symbiont community of G. pallidipennis, and to assess whether the symbionts might be important for host development and 
reproduction.

METHODS
16S rDNA sequence analyses: The genome DNA was isolated from G. pallidipennis by TIANamp Genomic DNA Kit (Tiangen®, 

Beijing, China) and used as template. The high fidelity Taq polymerase (TransGen Biotech, Beijing, China) was employed for the 
following PCR. The primers were 27 F (5'-AGAGTTTGATCCTGGCTCAG-3') and 1492 R (5'-TACGGTTACCTTGTTACGACTT-3') [32] (synthetic 
by Biological engineering of Beijing, China). Each reaction was run for 30 cycles. Reaction in each cycle was denaturation at 94°C 
for 30 s, annealing at 51.3°C for 45 s and extension at 72°C for 2 min (10 min extension for the last cycle). The products of PCR 
were detected by 1% gel electrophoresis and cloned into PMD19-T vector (Takala, Dalian, China) to construct recombinant vector. 
The positive clones identified by PCR verification were sequenced into DH5a (TransGen Biotech, Beijing, China) competent cells 
after electrotransformation. The plasmid of positive clones was extracted by TIANprep Mini Plasmid Kit (Tiangen®, Beijing, China), 
and analyzed by restriction enzymes MspI (Tiangen®, Beijing, China). The enzyme system includes the following: plasmid 4 μl, 10× 
T Buffer 2 μl, BSA 2 μl, MspI 1 μl, ddH2O 11 μl. The enzyme reaction was carried out at 37°C for 16 h. The digest products were 
separated by electrophoresis on a 2% gel.

Host insects, the treatment and sample preparation: The host insect colony of G. pallidipennis was established in the 
laboratory in 2010 with individuals originally collected near Xiaoyue River, in Beijing. G. pallidipennis was reared on artificial 
diet [34]. The new hatched G. pallidipennis nymphs on the same day were used for the study reared on artificial diet at (25 ± 
1)°C with a 16:8 (L: D) photoperiod under (70 ± 5)% RH in a climatic incubator. The treatment was 0.3mg/ml rifampin [35] 
(Jiangchen, Beijing, China) added to artificial diet and mixed well to remove microbial symbionts in G. pallidipennis, and artificial 
diet without antibiotics was used as a control. The G. pallidipennis were continuous feed by the treatment and the control over 
two generations. And then, five of 4th instar nymphs were collected and extracted genome DNA. The genome DNA was used as a 
template, the primers were WSP 81F (5‘-TGGTCCAATAAGTGATGAAGAAAC-3‘) and 691R (5‘-AAAAATTAAACGCTA CTCCA-3‘) [36,37] for 
PCR amplification, each reaction was run for 30 cycles. Reaction in each cycle was denaturation at 94°C for 30 s, annealing at 
44.6°C for 45 s and extension at 72°C for 2 min (7 min extension for the last cycle). The products of PCR were detected by 1% 
agarose gel electrophoresis.

Effects of microbial symbionts on host growth: For detection of the effects of microbial symbionts on the growth of G. 
pallidipennis, the host insects from the treatment or control described above over two generations were allowed to produce 
offspring, the newly hatched nymphs were placed individually in cylindrical Plexiglas tube (2 cm diameter, 4 cm height). One end 
of the tube was sealed with cotton and the other end was filled with artificial diet. The newly hatched nymphs in the same time 
was collected and checked at 6 pm every day for the development time (days) until adults. The development time for each instar 
was recorded, and the preoviposition time for adults was also recorded. All experiment insects was reared at (25 ± 1)°C with a 
16:8 (L:D) photoperiod under (70 ± 5)% RH in a climatic incubator. The experiment designed was completely randomized with 30 
replicates for the treatment and the control, respectively. The following data were assessed: developmental time from egg to adult; 
preoviposition time; weights of newly emerged adults.

Effects of microbial symbionts on host reproduction: For investigation of the effects of microbial symbionts on egg production 
of G. pallidipennis, the host insects from the treatment or control described above over two generations were allowed to produce 
offspring, the newly emerged adults were weighed using a Mettler microbalance (Saiduolisi, Germany) (0.1 mg sensitivity), one 
male and one female adult were then paired and reared together in a plastic dishes (9 cm diameter, 2 cm height) on the artificial 
diet. The eggs per female laid each day during the first two weeks were recorded. The experiment to examine the effects on the 
reproduction consisted of 24 replications for the treatment and control. For investigation of the effects of microbial symbionts on 
egg hatching rate of G. pallidipennis, the twenty eggs of the treatment and control were collected separately and the hatching rate 
was recorded, the experiment was completely randomized design with three replications.

Statistical analysis: Differences in development time of eggs and nymphs, adult weights, preoviposition time, egg production 
and hatching rate were analyzed using t-test with significance level set at p=0.05. And the means were separated using Duncan's 
Multiple Range Test with SAS (2004) [38].

RESULTS
16S rDNA sequence analyses to identify microbial symbionts: The 16S rDNA sequence analyses were conducted and the 

target fragment of 1500 bp as anticipated was obtained (Figure 1). One hundred positive clones were identified and sequenced. 
The results of those positive clones plasmid digested with MspI showed that there were three kinds of symbiotic bacteria in G. 
pallidipennis. The three symbionts identified in G. pallidipennis were Wolbachia, Lactobacillus and Uncultured bacterium. The 
basic local alignment search (Blast) demonstrated that there were 49 cloned sequences which were 98% homologous with 
Wolbachia; 22 cloned sequences those were 99% homologous with uncultured bacterium, and 29 cloned sequences those were 
100% homologous with Lactobacillus (Table 1).
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Figure 1. The PCR products of microbial symbiotes amplified. M: Molecular Markers DL 2000; 1: genome 
DNA of microbial symbiotes amplified.

Operating units Reference bacterium Register Homologous Percentage
M-1 Uncultured bacterium JF429312.1 99% 22%
M-2 Wolbachia HE583204.1 98% 49%
M-3 Lactobacillus NR_075042.1 100% 29%

Table 1. Identification and sequence analysis of the positive cloning.

Removal of Wolbachia in G. pallidipennis: The existence of Wolbachia in G. pallidipennis over two generations after antibiotic 
treatment was determined by the wsp gene amplified method. The target fragment was found in both antibiotic treatment and 
control for the first-generation of G. pallidipennis (Figure 2A), but at second generation, no Wolbachia could be detected in the 
antibiotic treatment (Figures 2B and 2C). The elimination of Wolbachia from G. pallidepennis was successfully achieved through 
continuous feed rifampin over two generations.

Figure 2. The PCR products of Geocoris pallidipennis genome DNA samples amplified by wsp gene (1: control 
(symbiosis); 2: treatment (aposymbiosis); M: Molecular Markers DL 2000). a: The PCR products of the first-
generation, 1: control (symbiosis); 2: treatment (aposymbiosis). b: The PCR products of the second generation; 
1-2: control (symbiosis); c: The PCR products of the second generation; 1-5: treatment (aposymbiosis).

Effects of microbial symbionts on host development: The effects of microbial symbionts on the development of G. 
pallidepennis were determined. The growth of G. pallidepennis was retarded after removing of microbial symbionts. The development 
times (days) for the treated insects were significantly longer (eggs: F=96.44; df=1, 58; P<0.0001; first instar: F=6.28; df=1, 54; 
P=0.0152; and fifth instar: F=8.12; df=1, 49; P=0.0064) compared with those of the control. Similarly, the preoviposition period 
(days) for the treated insects was also significantly longer than that of the control (F=6.49; df=1, 23; P=0.0180) (Table 2). 

Developmental stages Control Treatment
Egg 10.1d ± 0.14a 13.93d ± 0.36b

1st instar 8.09d ± 0.14a 8.97d ± 0.28b
2st instar 7.16d ± 0.21a 7.18d ± 0.21a
3st instar 7.09d ± 0.19a 7.2d ± 0.21a
4st instar 6.76d ± 0.19a 7.38d ± 0.32a
5st instar 8.52d ± 0.16a 9.25d ± 0.20b

Preoviposition 6.92d ± 0.35a 8.54d ± 0.51b
Data are means ± standard error. Lower-case letters indicated significant difference at P<0.05.

Table 2. Developmental times (days) of Geocoris pallidipennis in treatment and control.

Effects of microbial symbionts on host reproduction: The effects of microbial symbionts on the egg production per female 
were determined. Average egg production per day for a G. pallidepennis female showed two peaks on both treated and control 
artificial diet. The peaks of egg production were on the fifth and tenth days, the days of lowest egg production were first and 
seventh. The trend of the first two week in average egg production was basically identical. The average egg production for treated 
insects in the first weeks was not significantly different from that of the control (F=0.81; df=1,12; P=0.6809). However, the 
average egg production per female for the treated insects was significantly lower than that of the control in the second week 
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(F=6.41, df=1,12; P=0.0264) (Figure 3). Furthermore, the hatching rate of eggs of treated insects was significantly lower than 
that of control insects (F=64, df=1,4; P=0.0013) (Figure 4).

 
Figure 3. The average egg production per female of Geocoris pallidipennis each day (treatment (aposymbiosis) 
vs control (symbiosis)).

Figure 4. The egg hatching rate of Geocoris pallidipennis with treatment (aposymbiosis) and control 
(symbiosis). Error bars represent SE. Bars with the different letter are significantly different (P<0.05).

Effects of microbial symbionts on host weight: Male adult weight (2.14 mg) of G. pallidipennis treated with antibiotic was 
not significantly different from that (2.64 mg) of control (F=3.9; df=1,17; P=0.0648). However, the average female adult weight 
(2.33 mg) of G. pallidipennis treated with antibiotic was significantly different from that (3.07 mg) of control (F=23.5; df=1,24; 
P<0.0001) (Figure 5). 

Figure 5. Weights of females and males of Geocoris pallidipennis in treatment (aposymbiosis) vs those 
in control (symbiosis). Error bars represent SE. Bars with the different letter are significantly different 
(P<0.05), according to Duncan’s Multiple Range Test.

DISCUSSION
In generally, the removal of the Wolbachia and other microbial symbionts in insects can be achieved through antibiotic 

diet [34] and heat treatment over 30°C [39,40]. Pike et al. (2009) [41] had studied antibiotic treatment to eliminate Wolbachia and 
lead to sterility in the Folsomia candida. Gibson et al. (2005) [42] studied the role of yeasts associated with green lacewings 
using the methods of fungicides and heat treatment but unsuccessful. In this study, G. pallidipennis was treated by rifampin at 
concentration 0.3 mg/ml in order to remove Wolbachia and other microbial symbionts in G. pallidipennis. The results showed that 
this concentration did effectively remove Wolbachia infection without producing toxin to G. pallidipennis.

The Wolbachia has favorable effects on host development therefore inhibition or removal of the Wolbachia from host can 
have adverse effects on the host. Dong [26] found Wolbachia infections in Liposcelis tricolor decreased development periods and 
increase survivorship in some immature life stages. Effects of Wolbachia have been studied in some predatory bugs, such as 
Wolbachia in Macrolophus pygmaeus and Orius strigicollis [43,44]. The current study also showed that the G. pallidipennis without 
Wolbachia attained longer development time than the control. Similar results were reported by Hu et al. [41] and Lu et al., [43] 
they found that the development time of nymphs and life span of Sitobion avenae and Nilaparvata ugens stal were longer in 
rifampin treated group than those in control group. Furthermore, the weight of female of G. pallidipennis was dropped significantly 
after removal of Wolbachia and other microbial symbionts, and the average egg production per female per day also declined 
significantly on the second week in the treated insects. The results were similar to those symbionts found in parasitoid wasp 
[47] and Wolbachia in D. melanogaster [24]. The data from current study demonstrated that the growth and egg production were 
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affected by the removal of Wolbachia and other microbial symbionts in G. pallidipennis. The development and egg production of 
G. pallidipennis need a great deal of nutrients, the symbiotic bacteria may provide necessary nutrients to speed the host growth 
and production. However, it is necessary to conduct further research to determine the specific nutritious those Wolbachia or other 
microbial symbionts can provide for G. pallidipennis.
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