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INTRODUCTION
Mathematical modeling is an important instrument for investigating complex relations in our human world [1]. Mathematical 

modeling is extremely useful not only in economics, but also in technical and science disciplines.  Three main pillars that explain 
why mathematical modeling is important can be identified:  simulation/prognosis, decision support and understanding.

Simulation/prognosis: Models and simulation in environmental sciences are often applied to investigate possible 
ecological states in the future or to simulate situations that are virtually impossible to realize experimentally or that cannot be 
performed for ethical reasons, and so on. Examples of this type of simulation are

• modeling the movement of species as shown in [2-3],

• Change to a landscape caused by extreme weather conditions [4] 

• A biochemical model in an aquatic system [5] and

• Ecosystem models

– such as SALMO  [6] DELAQUA [7] and

– DYRESM-CAEDYM [8]

The Use of the Dynamic Fuzzy Method in Ecosystem
Modeling

Ralf Wieland1*, Rainer Bruggemann2, Peter Kasprzak3

             1Leibniz-Centre for Agricultural  Landscape  Research, Institute of Landscape Systems Analysis, 
Eberswalder  Str.  84, 15374 Muencheberg, Germany.

2Leibniz-Institute of Freshwater Ecology and Inland  Fisheries, Mueggelseedamm   310, 12587 Berlin.
3Leibniz-Institute of Freshwater Ecology and Inland  Fisheries, Alte Fischerhuette 2, OT Neuglobsow 

16775 Stechlin.

Research Article

Received date: 16/04/2015
Accepted date: 21/05/2015
Published date: 30/05/2015

*For Correspondence

Ralf Wieland, Leibniz-Centre for Agricultural  
Landscape  Research, Institute of Landscape 
Systems Analysis, Eberswalder  Str. 84, 15374 
Muencheberg, Germany

Email: psmore. rwieland@zalf.de

Keywords: Ordinary differential equation (ODE), 
Fuzzy modeling, Nonlinear systems, Dynamic 
fuzzy simulation, Simulation, Stakeholder-based 
approach, SAMT, Python.

ABSTRACT

A concept is rendered to replace the right-hand side of a set of 
ordinary differential equations with fuzzy models. This modeling approach 
allows stake- holder/expert knowledge to be included in the model 
development, leading to a white box approach and high credibility of 
models. An additional effect is that models are simple and stable.  The 
system behavior can be controlled flexibly  by fuzzy models;  a number  
of examples  are  presented  in the paper.  Stability is investigated using 
the Lyapunov exponent.  The approach is demonstrated using a simple 
aquatic ecosystem model and supported by open source software, namely 
the “Spatial Analysis and Modeling Tool” (SAMT), with additional modules 
written in Python.
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Just to mention a number of examples from the vast array of ecosystem models available (a relatively recent overview can 
be found [9]. A very rich source of models is the register of ecological models 1, the description of ECOBAS [10].(Ernst et al., 1997). 
For example EMMO [11] can be found there.

Decision Support:   The use of models to provide a basis for decision making is growing in importance.  SALMO, for example, 
was developed to help manage water reservoirs (see, for instance, the GETAS project)2. This class of modeling also includes 
statistical analysis, as shown in [12] models for transferring semantics to users, such as that discussed in [13], and so on. According 
to [14], the use of models to support decision-making should include stakeholders in the actual modeling process.  This open 
modeling approach increases the credibility and level of acceptance of simulation results. It is also not necessarily less accurate 
than simulation models. It was shown in [15] that a simple model based on expert knowledge can generate better results than a 
highly sophisticated process oriented model.

Understanding:  The mathematical model need not necessarily be complex in order to its interactions to be understood.   It 
suffices if (simple) models do not seriously contradict experimental knowledge, i.e. if they de- scribe the observed phenomena 
qualitatively correctly.  This type of model is known as minimal model [16] Scheffer has shown in numerous publications how such a 
type of model can help us to understand complex ecological interactions.  The advantage of minimal models is that mathematical 
formulations are simple, and there is less need to find parameter values and to run models with default values. 

Summarizing:  Minimal models may be described as being “as complex as necessary but as simple as possible”. The general 
need in mathematical modeling is abstraction.  It is evident that the degree of abstraction, i.e. the extent to which details are not 
mapped in a mathematical description, is a matter of actual knowledge and of the aim of modeling.  The degree of abstraction even 
depends on the modelers taste and intuition.  In [17] (page 9), a graphical model is shown visualizing the existence of an optimum:  
a more detailed mathematical model will produce a lower process-related bias at the cost of the uncertainty of measured input 
quantities, whereas a less detailed model will be biased with respect to the relevant processes.  An acceptable compromise must 
be found. When statistical models are applied, the existence of an optimum can be directly shown, as demonstrated by [18].

In this paper, a proposal is made to replace the right-hand side (rhs) of Ordinary differential equations (ODE) with dynamic 
fuzzy systems.  It will be shown that this  fuzzy approach  leads to  an easily understandable  and adaptable model.   In addition,  
the  model  is highly flexible  towards  model functional  behavior,  and should  exhibit  good numerical  stability.   In the words  
of [14], the  resulting  modeling  framework should be considered as “participatory modeling”, not only for stakeholders as in the 
mentioned publication, but also during a preceding stage for efficient cooperation with experts involved in conducting experiments.

MODEL DESCRIPTION
Description of the original model

A minimal model, following the ideas of Scheffer [19], contributes to the controversial ecological debate about the mesotrophic 
maximum hypothesis (MMH), which state that a low level of nutrition leads to a food web system with a few interactive paths.  
A high level of nutrition, i.e. eutrophic or hypertrophic systems, may lead to a complex food web with many interaction paths or 
to the absence of these very paths that transfer energy upwards to the top of the food web. Therefore the hypothesis is that in 
mesotrophic systems, the food web is rich enough to allow energy to be transferred from nutrition to top systems, but poor enough 
to be efficient. The basic model is schematically explained in (Figure 1).

In a real lake ecosystem, the three selected groups – zooplankton (daphnia), edible algae (algae) and inedible algae (cyano) 
– are virtually always diverse communities comprising a variety of species.  Thus, the presented scheme must be considered a 
strong simplification for the sake of indicating the potential of the modeling approach. The following system of ODEs describes 
the interactions shown in Figure 1, whereby the nutrition (soluble reactive phosphorus) is modeled as a parameter in the term P 
A (see equation1). Both algae and cyanos are described by a growing term (rX ∗Y ∗LX ∗P X ), where X  is either C yano or Algae.  Y 
stands for the population of C yano or Algae. Both C yano and Algae have a loss term (mortality, modeled after [20] and reduction 
by a flux term).   LX describes the light influence,  depending on water  depth  and the  role played  by blooms. In contrast  to  C 
yano, Algae  are  edible  by species  that,  in  a simplistic manner,  are  ascribed as belonging  to  zooplankton.   A term analogous 
to gD ∗ Daphnia ∗ Algae/(Algae + hD) does not appear in the ODE for C yano because cyanos represent inedible algae.

Finally, the ODE for Daphnia describes the increase in biomass from grazing (with efficiency, eD) and a loss by mortality 
(coefficient, mD).

dAlgae = rA*Algae *LA*PA - lossA-gD*Daphnia*Algae/(Algae + hD)
dt

                                                                (1)

dCyano = rC*Cyano*LC*PC - lossC
dt

                                                                                                                                  (2)

dDaphnia = (eD*gD*Daphnia*Algae)/(hD + Algae)-mD*Daphnia
dt

                                                                         (3)

The idea is that, together with a description of the efficiency of energy transferred to Daphnia (trophical transfer efficiency, 
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TTE), a maximum in the TTE can indeed be found if the parameter of nutrition is varied from low to high values  [21].

Figure 1: Conceptual model as a basis for the minimal model “MMH”.

Motivation For Dynamic Fuzzy Models

We are aware that the model equation 1-3 is merely a simplistic approach compared to simulation models.  Nevertheless, 
we prefer a simple model for this introductory text.  A dynamic fuzzy model replaces the rhs of an ODE with a combination of fuzzy 
models. Fuzzy models can implement linear and nonlinear process descriptions, as shown by [22]. This means that fuzzy models 
can implement a nonlinear behavior, as shown in the original

model in terms such as gD∗Daphnia∗Algae/(Algae+hD), which is known as Monod kinetics [23], In addition to sigmoid Monod 
kinetics, fuzzy models are also capable of implementing more complicated interactions.  The most important aspect is that 
biologists in the ecosystem modeling team, who are not necessarily familiar with the requirements of algebraic expressions of 
the rhs of ODEs, can infer knowledge in a broad sense, without knowing the ins and outs of the numerical consequences behind 
the model.  In a “broad sense” means that knowledge about a system can be expressed in terms of rules that do not necessarily 
include only one single process (see below).

Fuzzy models are developed in four steps as follows:

• Definition of the membership function to fuzzify inputs,

• Definition of the outputs,

• Fill in the rule base as a combination of the membership function to the outputs,

• Check the model using graphical analysis.

Development of fuzzy models

The development of fuzzy models is supported by open source software, namely the Spatial Analysis and Modeling  Tool 
(SAMT)  [24], which has an integrated fuzzy toolbox. It is important to mention that checking the model is also a step in the model 
developing process, supported by the toolbox.

dAlgae = rA*Algae *LA*PA - lossA-gD*Daphnia*Algae/(Algae + hD)
dt

                                                  (4)

5
dDaphnia = F (Daphnia,Algae)

dt
                                                                                                                                              (5)

6 7 8
dCyano =F (Cyano, P) + F (Cyano, flux) + F (Cyano,Algae)

dt
                                                                                     (6)

Equations 4-6 are derived from the additive structure of equations 1-3, whereby the loss terms are considered as parts of 
F1 and F6. Note that in the original equations (1-3) and in (4-6), phosphorus P is reduced to pf = P −(pgA∗Algae+pgC ∗C yano) 
by Algae and C yano during the simulation; (pgA and pgC are constants).  Compared to the original system, the interactions are 
now implemented more directly: for example, F1 (Algae, P ) expresses that an algae will uptake phosphorus and term F2(Algae, 
Daphnia) describes that algae will be grazed by Daphnia.

Nevertheless, fuzzy models are part of an ODE, as required for describing temporal evolution.  This means that the result 
also depends on the simulation time and step size. The dynamic fuzzy simulator [25], which is now part of the open source software 
SAMT, was developed so that biologists would not require an additional tool. The dynamic fuzzy simulator [25] was developed 
and is now part of the open source soft- ware SAMT. In addition to carrying out general checks using SAMTs fuzzy toolbox, the 
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fuzzy simulator enables the dynamic behavior to be checked, as well as the complete implementation of dynamic fuzzy models, 
including the graphical visualization of the systems behavior.

SOFTWARE ASPECTS
Model development requires three basic steps:

1. Implementation of fuzzy models

2. Implementation of the system of ODEs

3. Analysis of the dynamic behavior. These steps are described below.

Implementation of Fuzzy Models

The  complete  model  including all fuzzy models,  the  ODE code and a visualization  of the results  can be found as open  
source  code on the website3 .  Without loss of generality, the model “algae daphnefis” (F2) is selected to explain the fuzzy 
approach. The basics of the fuzzy algorithm used are described in [26]. Model F2 describes the relation between Daphnia and Algae, 
implementing a predator-prey model [27]. Both state variables Algae Figure 2 and Daphnia (Figure 3) are inputs of membership 
functions; the ordinate is the degree of subsethood; and the abscissa is the concentration of the population considered (algae) 
(Figure 2).

 
Figure 2: Membership function input Algae є [0, 1].

 
Figure 3: Membership function input Daphnia.

If, for example, the relative concentration of Algae is 0.25, then it belongs to a degree of µmh(0.25) = 0.2 to the class 
“medium high” (mh) and with a degree of µm (0.25) = 0.8 to the class “medium” (m) (Figure 3).
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For example, Daphnia belongs to the class medium (m) when (Daphnia = 0.2) is the value on the abscissa (µm(0.2) = 1.0) 
After defining the member- ship  function  of the  inputs,  modelers  have to  define the  output  function. So-called “singletons”, 
which can implement both nonlinear and linear models, are used as the output function [24]. Nonlinear systems have a much richer 
behavior and more interesting features than linear models [28].In particular, nonlinear models can express ecological knowledge 
much more easily than linear models are able to.  On the other hand, there is no closed theory available for fuzzy systems, and 
modelers have to use Monte Carlo simulations as a tool for investigating nonlinear systems.

 
Figure 4: Singletons as output.

After establishing the set of membership functions for Algae and Daphnia (Figures 2 and 3), we have to clarify what the 
consequence could be for Algae, for example, with respect to the term F2 considered here.  The possible outcomes arbitrarily 
span a range from [−0.02, 0] in an equidistant manner.  We call the resulting system of discrete outcomes (according to the 
discrete number of combinations of Algae, Daphnia memberships) “singletons”, denoted by ni . The fuzzy model interpolates 
linearly between singletons to implement a smooth behavior (see, for instance, equation 7) (Figure 4).

The outcomes (n0 = 0.0, n1 = −0.005, n2 = −0.01, n3 = −0.015, n4 = −0.02) express that a high relative concentration of 
Daphnia will reduce the relative concentration of Algae.

The fuzzy model itself contains 5 ∗ 6 rules corresponding to the combinations of membership functions of inputs with 
singletons.  A selection of the rules is presented in (Table 1).

No. input1 and input2 then outcome
13 if Algae==medium and Daphnia==small then O13 =n0
14 if Algae==medium and Daphnia==medium small then O14 =n1
15 if Algae==medium and Daphnia==medium then O15 =n2
16 if Algae==medium and Daphnia==medium high then O16 =n3
17 if Algae==medium and Daphnia==high then O17 =n3
18 if Algae==medium and Daphnia==very high then O18 =n4
19 if Algae==medium high and Daphnia==small then O19 =n0
20 if Algae==medium high and Daphnia==medium small then O20 =n2
21 if Algae==medium high and Daphnia==medium then O21 =n3
22 if Algae==medium high and Daphnia==medium high then O22 =n4
23 if Algae==medium high and Daphnia==high then O23 =n4
24 if Algae==medium high and Daphnia==very high then O24 =n4

Table 1: Excerpt from the rule base of F2.

For example, Algae = 0.25 and Daphnia = 0.2 lead to a membership function for Algae µmh(0.25) = 0.2 and µm(0.25) = 0.8 
(as shown in Figure 2); for Daphnia µm(0.2) = 1.0 (Figure 3).  Therefore rules 15 and 21 willfire.  Correspondingly, the final output 
O of the fuzzy model is (equation 7):

15 15 21 15

15 21

(Algae,Daphnia)*O (Algae,Daphnia)*OO =
(Algae,Daphnia)+ (Algae,Daphnia) 

µ µ
µ µ

+
                    (7)
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-0.8  0.01 - 0.2  0.015O = -0.011
0.8 + 0.2

=

A complete description of the fuzzy algorithm can be found in [29].

Implementation and simulation

The system of ODEs and the fuzzy models (the right-hand side of ODEs) define the simulation model.  The simulation 
comprises the numeric to solve ODEs, simulation control (for example the number of iteration steps,  step size, etc.),  management  
of simulation  parameters (initial states for system parameters, definition of control parameters such as phosphorus, flux) and 
visualization of the simulation results.  The simulation system was implemented in the programming language Python.  Python 
is an interpreter language developed by W. Rossum4 that is attracting a growing amount of interest.  For example, Python is the 
scripting language of the leading GIS software AR- CGIS5 . The  second  author  developed  open source  software  for an ordinal 
analysis of data matrices, PyHasse, Here, Python is used together with its modules: ODE solver, the “odeint” of the Python library 
“SCIPY”6 , was used and “Matplotlib” for visualization7 The solver for the fuzzy module was written in C++ and wrapped in Python 
code using wrapper “SWIG”8. Alternatively, the fuzzy code can be implemented as pure  Python  code which, however is slow.   A 
compilation with “Cython”9 constitutes a compromise between pure Python and C++. In relative units, the calculation speed is 
approximately as follows:  Python=0.05

: Cython=0.33: SWIG=1 on a normal PC (3GHz, 4GB RAM) under the operating system Linux.

Test and model extensions using the fuzzy toolbox

An important step in the model development is testing the models and their stepwise extension, which must be supported 
by a toolbox.  Figure 5 shows such test tools implemented using SAMTs fuzzy toolbox. The ordinate is the state variable Daphnia; 
the abscissa is the state variable Algae; the colors from green to yellow correspond to F2 (equation 5) (Figure 5).

 
Figure 5: Analysis of fuzzy models using the fuzzy toolbox of SAMT.

The left-hand side of Figure 5 shows small reductions for Algae and large reductions on the top right.   The top right  part  
expresses  a large amount of Daphnia and a large amount of Algae, i.e. good conditions for Daphnia and a large reduction,  on the  
other  hand, for Algae.   In addition to  the graphical output, modelers can “click” inside the matrix view to obtain the rule number, 
rule text, inputs and calculated output of the fuzzy model.

Functional behavior and stability

As discussed, fuzzy rules allow expert knowledge to be implemented.  For example, a high concentration of phosphorus may 
stimulate the growth of Algae but a too high concentration can be poisonous.  This could easily be implemented by adapting the 
rules pertaining to the fuzzy model.  The question is then: can a fuzzy approach model this knowledge correctly?  Although we 
are unable to provide formal proof of this, we will highlight a number of examples to show how powerfully fuzzy models can be 
applied to generate answers to this question.  The first example starts with simple runs to investigate the normal behavior of the 
dynamic fuzzy system and to determine whether it is sufficiently similar to real systems.  In the second example, dynamic behavior 
is investigated to show that the dynamic fuzzy system is able to produce oscillating results.  In the third example, which is related 
to the second, the stability of the dynamic fuzzy system will be investigated using the Ljapunov exponent.

RESULTS
Basic behavior

Starting with simple simulations, two typical scenarios were investigated. The first scenario is a “clear water” situation with 
a low phosphorus con- centration and no flux.  Figure 6 shows an increase from the initial relative concentration (Algae=0.01, 
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Daphnia=0.01 and C yano=0.01) to a stationary end concentration over a period of 200 days (Figure 6).
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Figure  6:  Clear water  situation:   P  = 0.05, f lux = 0 (Algae=line,  Daphnia=dotted, Cyano=dashed).

The second scenario is characterized by a high phosphorus concentration leading to a high concentration of C yano at the end 
and a suppressed growth of Algae and Daphnia, as shown in (Figure 7).
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Figure 7: Water  situation: P   =  0.5,  f lux =  0  (Algae=line,   Daphnia=dotted, Cyano=dashed).

The figures do not contradict experts expectations.   Now experts may be interested to discover whether or not the system is 
capable of simulating oscillating behavior as an amendment (in reference to the classical  LotkaVolterra model).

Oscillating

An oscillating behavior can be easily found by testing different values for P and f lux. However, we can only ascertain whether 
this is the best oscillation possible if an optimization routine is applied. The package “NLOPT”10, which contains many useful 
optimization routines, can be compiled under Linux as a Python module. The maximum of the third harmonic of Algae was chosen 
as the objective function.  The global routine GN MLSL together with local search algorithm LN COBYLA was used to find the 
optimum. This was found to be a good compromise between being stuck in a local optimum and having too little convergence 
speed. A table containing speed versus the optimal value of a number of NLOPT algorithms can be found in [25] (Figure 8).
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Figure 8: Water situation:  P = 0.1985, f lux = 0.0118 (Algae=line,  Daphnia=dotted, Cyano=dashed).

Note that the oscillation is caused by the dynamic of the actual system (as can also be the case in simple Lotka-Volterra 
models) and that the oscillating behavior is not initiated by a periodic input.   It should be clear that the oscillatory behavior 
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is usually triggered by outer influences. Here, we sought to show that the fuzzy approach possesses the flexibility required to 
generate oscillatory behavior.

Stability

In the subsections above, we demonstrated that dynamic fuzzy models are capable of implementing a rich functional 
behavior, ranging from quasi- stationary to periodic solutions.  However, it was not shown whether or not the implemented system 
is stable for all possible parameters.  To investigate stability, the Lyapunov exponent  was used.  This exponent quantifies the 
separation of two trajectories in the phase space:

  
0Z(t) Zteλδ δ=                                                                                                                                                                (8)

The maximal Lyapunov exponent is defined as:

0Z 0
0

Z(t)1lim lim ln
Zt tδ

δ
λ

δ→∞ →
=                                                                                                                                                (9)

A Lyaponov exponent λ < 0 means that the system is stable at this point; if λ ≈ 1, it could be stable or unstable.

The Lyapunov exponent can often only be computed numerically.  Most of the algorithms used to compute the Lyapunov 
exponent are based on a linearization of the system using an algebraic method (see [30] for example).   As far as we know, no 
method exists that can be applied to a fuzzy model.   We therefore applied the optimization routine from “NLOPT” to investigate 
the parameter space in terms of the maximal Lyapunov exponent.  For example, two parameters p1 and p2 may be selected to 
study the Lyapunov exponent as the function of these parameters.  Here, we decided to select P (related to the MMH) and f lux, 
which is known to strongly influence the systems behavior [21]. A map of the Lyapunov exponent was calculated for parameters P 
and f lux (Figure 9).

Figure 9: Map of the Lyapunov exponent; the larger the exponent, the darker (larger) the circles are.

Although the optimization routine cannot guarantee that the real maxi- mum will be found, there is evidence that λ < 0 for 
all sizes of the map.

DISCUSSION
The transformation from a traditional system of ODEs to a dynamic fuzzy system can be applied in a straightforward manner.  

Experts/stakeholders are able to understand the system and to contribute their expert knowledge to the fuzzy models. This 
leads to easily understandable models, i.e. implementation follows a white box approach. The white box approach and expert 
participation enhance the credibility of the simulation.  Experts are invited to add their own experience to model states that are 
outside the original rhs formulation of ODEs. One problem should be mentioned here.   The model deals with scaled variables 
(often a range between [min, max] → [0, 1] is used). Scaling is pertinent because otherwise it is difficult to select the size of time 
steps, i.e. the number of iterations.  Dealing with scaled variables helps modelers to learn the typical behavior of a dynamic fuzzy 
model for different applications. This is important because neither experts nor modelers are trained to build non- linear dynamic 
systems.  Acceptance of scaling requiring a posterior descaling allows the number of variables in models to be reduced, making 
them simpler and more reliable.  Descaling is required when results need to be compared with experimental findings. A dynamic 
fuzzy system should be analyzed using software that visualizes behavior under different settings of parameters.  Monte Carlo 
simulations are an important tool in the ecological context, which is why simulation software should support this kind of analysis.  
Applying Monte Carlo simulation can deliver a distribution of possible states of a lake, for example, which can be used to establish 
a control strategy for protecting such lakes. It was shown that dynamic fuzzy models can produce a rich set of dynamics, including 
“Monod” kinetics.  However, modelers do not need to know this kinetics in order to model the system.  It suffices to describe 
dependencies in the form of rules over a set of membership functions.  The example given shows how an expert/modeler applied 
his knowledge to describe the systems behavior.  It is very important that the expert/modeler is not restricted by having to include 
such rules that are not part of the original DGL but belong to their practical experience. The effect is amazing, showing that 
experts/modelers already have the complicated behavior implicitly in their mind when developing fuzzy models.

The stability of the dynamic fuzzy model was excellent, and was established without any need for fine tuning. Experts  know 
which states of a real  system  are  unstable, applying their  supplementary experience  to  develop  fuzzy models. n the  traditional 
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modeling process, modelers, often computer  scientists, would only consult experts  to  a limited extent. This limited amount of 
communication often constitutes a problem, and can lead to suboptimal solutions.  Another interesting problem connected to 
stability is the fact that dynamic fuzzy models can produce chaotic behavior [31]. In the  approach discussed, fuzzy models are  
used to  build

a dynamic system,  and not  to  control  a system.   We must still determine whether such a model can be chaotic.   There is 
evidence against chaos in realistic problems due to expert knowledge, which is often more stabilizing [32].

The fuzzy simulator is now part of the spatial analysis and modeling tool SAMT, and can be used together with the SAMT core 
as a library inside Python programs.  The high speed of dynamic fuzzy models enables them to be applied in spatially distributed 
environments.  The dynamic fuzzy implementation is about ten times faster than a plant-water-soil model developed at ZALF [33], 
A dynamic fuzzy model can therefore be applied many times in a large region.  It was possible to apply the dynamic fuzzy model 
introduced here to different parts of a lake to simulate a larger part or to the whole lake, for example. The main focus of this paper 
was to present a general method for handling nonlinear dynamic behavior based on fuzzy models.  Even simple nonlinear dynamic 
systems can exhibit a rich and sometimes surprising behavior, including deterministic chaos. This rich behavior is necessary when 
seeking to model real systems.  On the other hand, such simple models can be under- stood much more easily than complicated 
models. By reducing it to the main variables that describe a system, we have a great opportunity to understand the systems 
better, enabling us to move on from their relevant processes.  A model is perfect when nothing can be removed.
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