Thermochemical Properties of Mono and Di-fluorinated Ethanol's and its Radicals at Different Temperatures.

Hebah M Abdel-Wahab* and Joseph W Bozzelli

Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, USA

Research Article

ABSTRACT

Received date: 29/10/2020 Accepted date: 10/03/2021 Published date: 17/03/2021

*For Correspondence

Wahab HMA, Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, USA.

E-mail: dr.heathera@gmail.com

Tel: 9734622745

Keywords: Enthalpy, Entropy, Fluorinated ethanol, Heat capacity, Isodesmic reactions.

Thermochemical properties of fluorinated alcohols are needed for understanding their stability and reactions in the environment and in thermal process. Structures and thermochemical properties of these species were determined by the Gaussian M-062x/6-31+g (d,p) calculation. Contributions of entropy, S°298°K, and heat capacities, Cp(T) due to vibration, translation, and external rotation of the molecules were calculated based on the vibration frequencies and structures obtained from the M-062x/6-31+g (d,p) density functional method. Potential barriers are calculated using M-062x/6-31+g (d,p) density functional method and are used to calculate rotor contributions to entropy and heat capacity using integration over energy levels of rotational potential. Enthalpies of formation for 19 fluorinated ethanol and some radicals were calculated with a popular ab initio and density functional theory methods: the Gaussian M-062x/6-31+g (d,p) via several series of isodesmic reactions. •. Entropies (S-298°K in cal mol^{-1} K⁻¹) were estimated using the M-062x/6-31+g (d,p) computed frequencies and geometries. Rotational barriers were determined and hindered internal rotational contributions for S-298°-1500°K, and Cp(T) were calculated using the rigid rotor harmonic oscillator approximation, with direct integration over energy levels of the intramolecular rotation potential energy curves.

C-H BDE Kcal mol-1 VS. Number of F atoms

 $C{\rm -F}$ and $C{\rm -H}$ Bond Dissociation Energies (BDEs) for mono and difluorinated ethanols and radicals.

INTRODUCTION

The aim is to calculate The enthalpy of formation, standard entropy and heat capacity of mono and di fluorinated ethanol's and its radicals using Gaussian M-062x/6-31+g (d,p) method of calculation. In order to calculate the enthalpy of formation of fluorinated ethanols using this method, we use the calculated enthalpies of formation in work reactions along with reference species.

Fluorinated hydrocarbons used as refrigerants, in polymers, heat exchange fluids, and as solvents. They are present in the atmosphere, lithosphere, and hydrosphere. Because of their less adverse effects on the stratospheric ozone layer, they are used in place of greenhouse gases ^[1-3]. Fluorinated hydrocarbons exist as compounds ranging from pure to oxidized intermediates resulting from oxidation in the environment. In order to study their reactivity in biological systems, lifetimes, and in the environment,

it's critical to understand the chemical and thermodynamic properties of fluorocarbons and their breakdown intermediates.

The thermochemistry of fluorinated alcohols with one carbon atom were studied in the past and are in the literature ^[1]. In 2016 Hang Wang studied thermodynamic properties of fluorinated methanol using CBS-QB3, M06, M06-2X, WB97X, W1U, B3LYP, CBS-APNO and G4 Calculations. Small standard deviation suggests good error cancellation of work reactions and accuracy.

Figure 1. Optimized geometry for CH₂FCH₂OH at the m062x/6-31+g (d, p) level of theory.

Figure 2. Optimized geometry for CH_3CHFOH at the m062x/6-31+g (d, p) level of theory.

Figure 3. Optimized geometry for $C \cdot HFCH_2OH$ at the m062x/6-31+g(d, p) level of theory.

RRJCHEM | Volume 10 | Issue 4 | April, 2021

Figure 4. Optimized geometry for $CH_2FCH \cdot OH$ at the m062x/6-31+g(d, p) level of theory.

Figure 5. Optimized geometry for $CH_2FCH_2O \bullet$ at the m062x/6-31+g(d, p) level of theory.

Figure 6. Optimized geometry for $CH_2 \circ CHFOH$ at the m062x/6-31+g(d, p) level of theory.

Figure 7. Optimized geometry for $CH_3CF \cdot OH$ at the m062x/6-31+g(d, p) level of theory.

Figure 8. Optimized geometry for $CH_3CHFO \cdot$ at the m062x/6-31+g(d, p) level of theory.

Figure 9. Optimized geometry for $CH_2FCHFOH$ at the m062x/6-31+g(d, p) level of theory.

Figure 10. Optimized geometry for CF_2HCH_2OH at the m062x/6-31+g(d, p) level of theory.

Figure 11. Optimized geometry for CH_3CF_2OH at the m062x/6-31+g(d, p) level of theory.

Figure 12. Optimized geometry for C • HFCFHOH at the m062x/6-31+g(d, p) level of theory.

Figure 13. Optimized geometry for $CH_2FC \bullet FOH$ at the m062x/6-31+g(d, p) level of theory.

Figure 14. Optimized geometry for $CH_2FCHFO \cdot$ at the m062x/6-31+g(d, p) level of theory.

Figure 15. Optimized geometry for $C \cdot F_2CH_2OH$ at the m062x/6-31+g(d, p) level of theory.

Figure 16. Optimized geometry for $CHF_2C \bullet HOH$ at the m062x/6-31+g(d, p) level of theory.

Figure 17. Optimized geometry for $CHF_2CH_2O \bullet$ at the m062x/6-31+g(d, p) level of theory.

Figure 18. Optimized geometry for $CH_2 \circ CF_2OH$ at the m062x/6-31+g(d, p) level of theory.

Figure 19. Optimized geometry for $CHF_2C \cdot HOH$ at the m062x/6-31+g(d, p) level of theory.

Figure 20. Optimized geometry for $CHF_2CH_2O \bullet$ at the m062x/6-31+g(d, p) level of theory.

M06-2x/6-31+g (d,p) calculation had small values for standard deviations, it is an accurate method to calculate Enthalpy of fluorinated alcohols, it shows the second smallest standard deviation after CBS-QB3 method of calculation (Figures 1-20), shows the optimized geometries at the m062x/6-31+g (d, p) level of theory for target molecules.

Halogenated compounds are highly stable, have low reactivity and are valued chemicals in industry^[4]. Due to its widespread use and their persistence in the environment, they are of concern to the environment. In order to understand the oxidation and reduction reactions involving such molecules, their thermochemical properties must be studied^[4].

EXPERIMENTAL PROCEDURE

Computational method

Composite calculations and series of Isodesmic Reactions are used to calculate enthalpy of formation of fluorinated ethanols. All calculations are performed using the Gaussian 16 program. The DFT method M06-2x is used to initially analyze optimized structures, frequencies, thermo energies and internal rotors of the molecules studied. It's a Global-Hybrid Meta-GGA density functional approximation, GGA, generalized gradient approximation, in which the density functional depends on the up and down spin densities and their reduced gradient, meta GGA, in which the functional also depends on the up and down spin kinetic energy densities, hybrid GGA, a combination of GGA with Hartree-Fock exchange, hybrid meta GGA, a combination of meta GGA with Hartree-Fock exchange. All reported values are for standard state of 298°K and 1 atm ^[5]. We continue the calculation of fluorinated alcohols in this study with this method, because the M-062x/6-31+g (d,p) level of calculation have been applied to fluoro hydrocarbons with small reported standard deviations values ^[6].

Isodesmic and isogyric reaction

The enthalpy of formation of mono and di fluorinated ethanol's and its radicals has been calculated using Gaussian M-062x/6-31+g (d,p) method of calculation. In order to calculate the enthalpy of formation of fluorinated ethanols using this method, we use the calculated enthalpies of formation in work reactions along with reference species.

The number of each type of bond must be conserved in the isodesmic reactions in order to cancel any systematic error in the molecular orbital calculations using this method. Calculations of enthalpies of formation are allowed to accuracies close to experimental values by the careful choice of the isodesmic reactions ^[1]. Taking 1-fluoroethanol as an example, two isodesmic reactions are selected to determine the $\Delta_{f}H^{\circ}_{(298K)}$ of the target molecule, 1-fluoroethanol **(Table 1)**. Since the $\Delta_{f}H^{\circ}_{(298K)}$ values of all species but 1-fluoroethanol in **Table 1** are known, the $\Delta_{f}H^{\circ}_{(298K)}$ of the target species 1-fluoroethanol, is obtained from this data and the calculated $\Delta rxnH_{(298K)}$. $\Delta_{f}H^{\circ}_{(298K)}$ calculated using two different reference molecules are within ±0.2 kcal/mol ^[1,2].

Reference species

Standard enthalpy of formation for the reference species used in the isodesmic work reactions along with their uncertainties are listed, **(Tables 1 and 2)** provides one example on the method of Isodesmic Work Reactions used for the calculation of the Standard Enthalpy of Formation $\Delta_{f}H^{\circ}_{(298K)}$ for the fluoroethanols.

RESULTS AND DISCUSSION

Entropy and heat capacity values

Internal rotor contributions to calculated entropy and heat capacity at 298-1500 K were determined using the molecular mass of each molecule, number of optical isomers, symmetry of the molecule, electron degeneracy, moment of inertia, and vibrational frequencies values (**Table 3**). The vibrational frequencies for the calculation of heat capacity and entropy at the

Table 1. Example for enthalpy of formation calculations for 1-fluoroethanol using isodesmic reactions; using different reference molecules, Units in kcal/mol.

Isodesmic Reactions	Δ _{rxn} H° Hartrees	Δ _{rxn} H° _(298K) kcal/mol	Δ _r H° _(298K) , CH3– xCH2FxOH, CH3CH2-xFxOH kcal/mol	Error kcal/mol	Equ. #
CH2FCH2OH + CH4 = CH3CH2OH + CH3F -254.173115a -40.447961 -154.926666 -139.683801 Reference Values -17.81 -56.21 -56.54 Kcal mol-1	0.010609	6.657243	-101.6	± 0.2	1
CH2FCH2OH + CH3CH3 = CH3CH2OH + CH3CH2F -254.173115 -79.717768 -154.926666 -178.963776 -20.05 -56.21 -65.42	0.000441	0.276731	-101.9	± 1.3	2
Reported ΔfHo (298) kcal mol-1			-101.7 ± 0.7		
Standard Deviation over rxns			± 0.1		

Table 2. Reference Species in the isodesmic reactions standard enthalpy of formation values (kcal/mol).

Species	Δ _f H° _(298K)	Species	Δ _f H° _(298K)
CH₃F	-56.54 ± 0.07ª -56.62 ± 0.48 ^h	CH ₃ OOH CH ₃ CH ₂ OOH	-30.96 ± 0.67 ^b -38.94 ± 0.81 ^b
CH ₃ CH ₂ F	-65.42 ± 1.11ª	CH ₃ CH ₂ CH ₂ OOH	-44.03 ± 0.67 ^b
CH ₃ CH ₂ CH ₂ F	-70.24 ± 1.30ª	CH ₃ OO.	2.37 ± 1.24 ^₅
CH ₂ F ₂	-108.07 ± 1.46 ^a -107.67 ± 0.48 ^h	CH ₃ CH ₂ OO·CH ₃ CH ₂ CH ₂ OO·	-6.19 ± 0.92 ^b -11.35 ± 1.24 ^b
CH ₃ CHF ₂	-120.87 ± 1.62 ^a	CH_{a}	-17.81 ± 0.01°
CH ₃ CH ₂ CHF ₂	-125.82 ± 1.65ª	CH ₃ CH ₃	-20.05 ± 0.04°
CHF ₃	-166.71 ± 1.97 ^h -166.09 ± 0.48 ^h	CH ₃ CH ₂ CH ₃ CH ₃ CH ₂ CH ₂ CH ₃	-25.01 ± 0.06 ⁱ -30.07 ± 0.08 ⁱ
CH ₃ CF ₃	-180.51 ± 2.05ª	CH ³ O.	5.15 ± 0.08 °
CH ₃ CH ₂ CF ₃	-185.48 ± 2.15ª	CH ₃ CH ₂ O.	-3.01 ^d
CH ₃ .	34.98 ± 0.02°	OH	8.96 ± 0.01°
CH ₃ CH ₂ •	28.65 ± 0.07°	CH ₃ OH	-47.97 ± 0.04°
CH ₃ CH ₂ CH ₂ ·	24.21 ± 0.24 ^{gi} 24.18 ⁱ	CH ₃ CH ₂ OH	-56.07 ± 0.05 ⁱ
Н	52.10°	HOO.	2.94 ^{cj}
0	59.57°	ноон	-32.39 ± 0.04 ^{fj} -32.37 ⁱ

Table 3. Monofluoro and difluoro- ethanol's ideal gas phase entropy and heat capacity obtained using M-062x/6-31+g (d,p) level of theory (Cal /mol K).

Sp	ecies	S(298°K)	Ср(298°К)	Ср(298°К)	Ср(500°К)	Ср(600°К)	Ср(800°К)	Ср(1000°К)	Ср(1500°К)
	TVR	64.74	13.23	17.12	20.72	23.75	28.18	31.11	35.06
		3.84	3.24	3.48	3.43	3.22	2.68	2.23	1.62
CH ₂ FCH ₂ OH	Internal Rotor	2.02	3.15	3.33	3.04	2.66	2.05	1.69	1.3
	Total	70.6	19.62	23.94	27.2	29.62	32.91	35.03	37.98
	TVR	65.17	14.06	17.9	21.37	24.26	28.51	31.32	35.15
		4.48	2.13	2.09	1.95	1.8	1.56	1.4	1.19
СН ₃ СНГОН	Internal Rotor	2.67	2.17	2.21	2.18	2.09	1.89	1.71	1.4
	Total	72.32	18.35	22.21	25.5	28.16	31.96	34.42	37.75
	TVR	66.3	13.54	16.96	19.97	22.48	26.29	29.04	33.33
C•HFCH ₂ OH Internal R		6.19	2.31	1.91	1.69	1.54	1.36	1.25	1.13
	Internal Rotor	3.09	3.16	2.52	2.04	1.74	1.41	1.25	1.11
	Total	75.58	19.01	21.38	23.7	25.76	29.06	31.55	35.56
	TVR	66.47	13.76	17.09	20.04	22.52	26.29	29.02	33.31
		5.72	2.34	2.22	2.09	1.95	1.73	1.56	1.32
CH ₂ FCH•OH	Internal Rotor	6	1.96	1.95	1.95	1.91	1.79	1.65	1.4
	Total	78.19	18.06	21.27	24.07	26.38	29.81	32.24	36.03
	TVR	75.3	20.44	23.66	26.27	28.39	31.55	33.79	37.16
CH,FCH,0•	Internal Rotor	6.08	2.2	1.96	1.7982	1.68	1.53	1.43	1.27
	Total	81.38	22.64	25.62	28.07	30.07	33.08	35.21	38.42
	TVR	66.89	14.8	18.21	21.07	23.4	26.9	29.44	33.49
	4.94	1.42	1.25	1.17	1.12	1.06	1.04	1.01	
CH ₂ •CHFOH	Internal Rotor	2.84	1.95	2.12	2.12	2.04	1.83	1.64	1.35
	Total	74.67	18.17	21.58	24.35	26.55	29.79	32.11	35.86
	TVR	66.56	13.94	17.25	20.17	22.62	26.38	29.11	33.38
		4.91	1.97	1.75	1.57	1.44	1.27	1.18	1.08
CH ₃ CF • OH	Internal Rotor	1.71	2.6	3.17	3.22	3.01	2.43	1.99	1.45
-	Total	73.18	18.5	22.17	24.96	27.07	30.08	32.28	35.92
TVR	TVR	66.73	14.44	18.16	21.39	24.09	28.18	31.12	35.58
CH,CHF0 •	Internal Rotor	4.55	2.12	2.05	1.9	1.75	1.51	1.36	1.18
5	Total	71.27	16.56	20.21	23.29	25.84	29.69	32.48	36.75
	TVR	67.46	15.41	19.51	23.12	26.07	30.23	32.83	36.15
	Internal Datar	0	0	0	0	0	0	0	0
Cn ₂ FCHFUH	Internal Rotor	6.12	3.11	2.64	2.24	1.94	1.57	1.37	1.17
	Total	73.58	18.52	22.15	25.35	28	31.79	34.2	37.31
	TVR	62.94	12	15.54	18.95	21.9	26.43	29.57	34.06
	Internal Datar	4.98	3.36	3.2	2.97	2.72	2.26	1.93	1.48
	Internal Rotor	2.23	3.21	3.17	2.81	2.44	1.91	1.6	1.27
	Total	70.15	18.57	21.91	24.72	27.06	30.6	33.1	36.81
	TVR	68.41	16.53	20.74	24.23	27.01	30.87	33.29	36.37
CH CE OH	Internal Potor	4.53	2.13	2.08	1.93	1.77	1.53	1.38	1.18
011 ₃ 01 ₂ 011		1.58	2.45	3.09	3.28	3.14	2.6	2.14	1.53
	Total	74.52	21.11	25.91	29.44	31.93	35.01	36.8	39.08
	TVR	69.58	15.15	18.76	21.84	24.36	28.05	30.59	34.38
CH FC • FOH	Internal Rotor	6.18	3.28	2.51	2.07	1.8	1.5	1.34	1.16
		3.15	1.91	1.96	1.91	1.83	1.65	1.5	1.27
	Total	78.9	20.34	23.22	25.82	27.99	31.19	33.43	36.81
	TVR	69.6	15.48	19.22	22.3	24.76	28.32	30.75	34.41
C • HFCFHOH	Internal Rotor	6.92	2.03	1.69	1.49	1.37	1.22	1.15	1.07
		1.72	2.79	3.1	3.03	2.83	2.37	2.02	1.52
	Total	78.25	20.3	24.01	26.83	28.96	31.91	33.92	37
	TVR	70.53	15.99	19.88	23.22	25.94	29.93	32.65	36.59
CH ₂ FCHFO •	Internal Rotor	5.48	2.92	2.79	2.58	2.37	2.01	1.76	1.4
	Total	76.01	18.91	22.67	25.8	28.31	31.94	34.41	37.99
	TVR	68.27	15.46	19.18	22.25	24.71	28.28	30.72	34.4
	Internal Rotor	6.07	2.65	2.3	2.05	1.86	1.61	1.45	1.24
20 HUH		1.51	2.5	3.06	3.18	3.06	2.6	2.2	1.61
	Total	75.85	20.61	24.54	27.48	29.63	32.49	34.37	37.25

	TVR	69.57	15.16	18.73	21.81	24.32	28.03	30.58	34.37
	Internel Deter	6.18	2.68	2.38	2.11	1.89	1.5848	1.41	1.19
C•F ₂ CH ₂ OH	Internal Rotor	3.46	2.45	2.04	1.75	1.55	1.32	1.21	1.09
	Total	79.21	20.29	23.15	25.66	27.76	30.94	33.19	36.65
	TVR	70.02	15.31	18.91	22.14	24.87	29.03	31.94	36.19
	Internal Rotor	5.78	2.51	2.41	2.26	2.1	1.83	1.63	1.34
	Total	75.79	17.82	21.32	24.4	26.97	30.86	33.57	37.53
	TVR	70.2	17.3	21.07	23.93	26.13	29.24	31.38	34.69
	Internal Datar	4.97	1.37	1.23	1.16	1.11	1.06	1.04	1.01
	Internal Rotor	1.78	2.81	3.33	3.25	2.9407	2.3	1.87	1.38
	Total	76.95	21.48	25.63	28.35	27.25	32.61	34.29	37.09
	TVR	70.14	16.85	20.78	23.99	26.55	30.3	32.87	36.66
	Internal Botor	4.84	2.08	1.89	1.7	1.54	1.35	1.23	1.11
Un ₃ UF ₂ UV	Internal Rotor	5.78	2.51	2.41	2.26	2.1	1.83	1.63	1.34
	Total	80.75	21.44	25.08	27.94	30.2	33.47	35.73	39.11

M-062x/6-31+g (d,p) level of calculation was scaled by a factor of 0.97^[7]. The moment of inertia values is shown in the Supporting Information Table provided. To calculate the contributions of external rotor, vibration and transition to the calculated entropy and heat capacity, the "SMCPS" program is used ^[8]. It employs the rigid-rotor harmonic oscillator approximation using moment of inertia from optimized structure and frequencies. The "Rotator" ^[9] program by Lay et al. ^[10] is used to calculate internal rotor contributions from the corresponding internal rotor torsion frequencies. In this paper, a torsional potential curve presenting a ten-parameter Fourier series function is used to calculate the contribution of internal rotor. Parameters and detailed functions are shown in the Supporting Information Table provided. Rotor program is used to calculate thermodynamic functions from hindered rotations with arbitrary potentials ^[11].

Calculation of the Hamiltonian matrix of the internal rotor, and subsequent calculation of energy levels by direct diagonalization of the matrix are employed by this technique. Rotational barriers versus dihedral angle is presented as a potential curve. In this paper, the calculated torsional potential at discrete torsional angles

$$V(\varnothing) = a_0 + \sum_{i=1}^{10} a_0 \cos(i\varnothing) + \sum_{j=1}^{10} b_j \cos(j\varnothing)$$

The coefficients a_i and b_j are calculated to present the maxima and minima of the torsional potentials with a possibility to shift from the extreme angular positions.

Calculations of heat capacity and standard entropy based on benchmark database and the computational chemistry comparison for the M-062x/6-31+g (d,p) calculation method, the vibrational frequencies were scaled by a factor of 0.987 ^[12]. Potential Energy profiles for mono and di fluorinated ethanol and their related radicals are listed in the Supporting Information Table provided., the solid lines are the fit of Fourier series expansion, rotator contribution for barriers below 7 kcal mol⁻¹ were added to the SMCPS calculated entropy and heat capacity. Energies are in kcal/mol **(Table 4)** ^[13-35].

Standard enthalpy values

Enthalpies of formation were determined from isodesmic work reactions from M-062x/6-31+g (d,p) method of calculation. The standard enthalpy of formation for the reference species along with their uncertainties, which are used the isodesmic work reactions, **(Table 5)** are listed in **Table 2** in kcal mol⁻¹. The standard deviation was calculated ^[36] for all Enthalpies of formation values for all 19 fluorinated ethanol and are included in **Table 5**. Details of the method of standard deviation and example calculation(s) are shown in the supporting information table provided ^[36].

The standard deviation is calculated using the following formula:

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2}$$

Where, X is the mean; the average of the numbers, µ is the actual numbers to be calculated the standard deviation of, and

$$rac{1}{N}\sum_{i=1}^{N} \left(x_i - \mu\right)^2$$
 is the variance.

The standard deviation for standard enthalpy of formation for 1-fluroethanol is calculated to be \pm 0.1. The calculation of standard deviation for this molecule is as follows:

N=2, µ₁= -101.60, µ₂= -101.86

Table 4. Bond dissociation energy (BDE's) of monofluoro and difluoro- ethanol's. ■ Bond Energies

Reactions	Bond Dissociation Energy ^a (kcal/mol) BDE (this study)	Error kcal/mol
<u>H-CHFCH,OH</u>		
H-CHFCH ₂ OH = $H \bullet \stackrel{\bullet}{+} \bullet CHFCH_2OH$ -101.7 ± 0.1 52.1 -50.7 ± 0.09	103.1 ± 0.1	± 0.2
<u>CH2FC-HHOH</u>		
$CH_{2}FC-HHOH = H \cdot + CH_{2}FC \cdot HOH$ -101.7 ± 0.1 52.1 -56.1 ± 0.1	97.7 ± 0.1	± 0.2
CH ₂ FCH ₂ O-H		
$CH_2FCH_2O-H = H \cdot + CH_2FCH_2O \cdot -101.7 \pm 0.152.1 -45.0 \pm 0.1$	108.8 ± 0.1	± 0.2
<u>H-CH₂CHFOH</u>		
$H-CH_2CHFOH = H \cdot + \cdot CH_2CHFOH$ -113.5 ± 0.2 52.1 -59.6 ± 0.1	106.0 ± 0.15	± 0.3
<u>CH₃C-HFOH</u>		
$H-CH_2CHFOH = H \cdot + CH_3C \cdot FOH$ -113.5 ± 0.2 52.1 -68. ± 0.2	97.6 ± 0.2	± 0.4
<u>CH,FC-HFOH</u>		
CH ₂ FC-HFOH = H • + CH ₂ FC • FOH -154.6 ± 0.6 52.1 -104.1 ± 0.1	106.8 ± 0.2	± 0.4
<u>CH,FCHFO-H</u>		
$CH_2FCHFO-H = H \cdot + CH_2FCHFO \cdot 154.6 \pm 0.6 52.1 -99.1 \pm 0.1$	101.1 ± 0.4	± 0.8
<u>CF₂-HCH₂OH</u>		
CF_2 -HCH ₂ OH = H• + • CF_2CH_2OH -155.3 ± 0.1 52.1 -102.3 ± 0.2	107.6 ± 0.35	± 0.7
<u>CF2HCH-HOH</u>		
$CF_2HCHOH + H = H \cdot + CF_2HC \cdot OH$ -155.3 ± 0.1 52.1 -102.4 ± 0.2	105.1 ± 0.15	± 0.7
<u>CF₂HCH₂O-H</u>		
CF ₂ HCH ₂ O-H = H • + CF ₂ HCH ₂ O • -155.3 ± 0.1 52.1 -98.9 ± 0.2	108.5 ± 0.15	± 0.3
<u>H-CH₂CF₂OH</u>		
$H-CH_2CF_2OH = H \cdot + \cdot CH_2CF_2OH$ -174.5 ± 0.1 52.1 -119.4 ± 0.2	107.2 ± 0.15	± 0.3
<u>CH₃CF₂O-H</u>		
$CH_{3}CF_{2}O-H = H \cdot + CH_{3}CF_{2}O \cdot -174.5 \pm 0.152.1 -110.6 \pm 0.1$	116.0 ± 0.1	± 0.2

Hartrees, kcal mole¹ *SD Standard Deviation kcal mol¹ Errors reported avg of sum of uncertainties in rxn's reference species

Table 5. Standard Enthalpy of Formation using isodesmic reactions: Monofluoro and Difluoro- Ethanols using the M06-2x/6-31+g (d, p) Level of Theory. Errors reported as sum of avg uncertainty in rxn's reference specie.

Isodesmic Reactions Target Specie	Δ _{rxn} H° _(298K)	Δ _{rxn} H° _(298K) kcal/mol	Δ _{rxn} H° _(298K) kcal/mol	Error kcal/mol
CH ₂ FCH ₂ OH + CH ₄ = CH ₃ CH ₂ OH + CH ₃ F -254.173115 -40.447961 -154.926666 -139.683801 -17.81 -56.21 -56.54	0.010609	6.657243	-101.6	± 0.2
CH ₂ FCH ₂ OH + CH ₃ CH ₃ = CH ₃ CH ₂ OH + CH ₃ CH ₂ F -254.173115 -79.717768 -154.926666 -178.963776 -20.05 -56.21 -65.42	0.000441	0.276731	-101.9	± 1.3
Reported Δ_fH°_(298K) kcal mol⁻¹			-101.7 ± 0.7	
Standard Deviation over rxns			± 0.1	
CH ₃ CHFOH + CH ₃ CH ₂ CH ₃ = CH ₃ CH ₂ OH + CH ₃ CH ₂ CH ₂ F -254.19203 -118.990915 -154.926666 -218.237381 -25.02 -56.21 -70.24	0.018898	11.85867	-113.3	± 1.5
CH ₃ CHFOH + CH ₃ CH ₃ = CH ₃ CH ₂ OH + CH ₃ CH ₂ F -254.19203 -79.717768 -154.926666 -178.963776 -20.05 -56.21 -65.42	0.019356	12.14606	-113.7	± 1.3

Reported Δ _f H° _(298K) kcal mol ^{.1}			-113.5 ± 1.4	
Standard Deviation over rxns			± 0.2	
C•HFCH ₂ OH + CH ₃ CH ₂ CH ₃ = CH ₃ CH ₂ O• + CH ₃ CH ₂ CH ₂ F -253.518298 -118.990915 -154.268107 -218.237381 -25.02 -3.01 -70.24	0.003725	2.337471	-50.6	± 1.4
C•HFCH ₂ OH + CH ₄ = CH ₃ CH ₂ O• + CH ₃ F -253.518298 -40.447961 -154.268107 -139.683801 -17.81 -3.01 -56.54	0.014351	9.005382	-50.8	± 0.1
Reported Δ _f H° _(298K) kcal mol ⁻¹			-50.7 ± 0.8	
Standard Deviation over rxns			± 0.1	
CH ₂ FCH•OH + CH ₃ CH ₃ = CH ₃ CH ₂ O• + CH ₃ CH ₂ F -253.518298 -79.717768 -154.268107 -178.963776 -20.05 -3.01 -65.42	0.012436	7.803702	-56.2	± 1.2
CH ₂ FCH•OH + CH ₄ = CH ₃ CH ₂ O• + CH ₃ F -253.518298 -40.447961 -154.268107 -139.683801 -17.81 -3.01 -56.54	0.022604	14.18421	-55.9	± 0.1
Reported Δ _f H° _(298K) kcal mol ⁻¹			-56.1 ± 0.6	
Standard Deviation over rxns			± 0.1	
CH ₂ FCH ₂ O• + CH ₃ CH ₂ CH ₃ = CH ₃ CHO• + CH ₃ CH ₂ CH ₂ F -253.509195 -118.990915 -154.268107 -218.237381 -25.02 -3.01 -70.24	-0.00538	-3.37474	-44.9	± 1.4
$CH_2FCH_2O \bullet + CH_4 = CH_3O \bullet + CH_3CH_2F$ -253.509195 -40.447961 -114.989112 -178.963776 -17.81 5.15 -65.42	0.004268	2.678208	-45.1	± 1.2
Reported Δ _f H° _(298K) kcal mol ⁻¹			-45.0 ± 1.3	
Standard Deviation over rxns			± 0.1	
CH ₂ •CHFOH + CH ₄ =CH ₃ O• + CH ₃ CH ₂ F -253.532134 -40.447961 -114.989112 -178.963776 -17.81 5.15 -65.42	0.027207	17.07264	-59.5	± 1.2
CH ₂ •CHFOH + CH ₃ CH ₃ = CH ₃ CH ₂ O• + CH ₃ CH ₂ F -253.532134 -79.717768 -154.268107 -178.963776 -20.05 -3.01 -65.42	0.018019	11.30708	-59.7	± 1.2
Reported Δ _f H° _(298K) kcal mol ⁻¹			-59.6 ± 1.2	
Standard Deviation over rxns			± 0.1	
CH ₃ CF•OH + CH ₃ CH ₃ = CH ₃ CH ₂ O• + CH ₃ CH ₂ F -253.542527 -79.717768 -154.268107 -178.963776 -20.05 -5.01 -65.42	0.028412	17.82879	-68.2	± 1.2
CH ₃ CF•OH + CH ₃ CH ₂ CH ₃ = CH ₃ CH ₂ O• + CH ₃ CH ₂ CH ₂ F -253.542527 -118.990915 -154.268107 -218.237381 -25.02 -5.01 -70.24	0.027954	17.54139	-67.8	± 1.4
Reported $\Delta_{f}H^{\circ}_{(298K)}$ kcal mol ⁻¹			-68.0 ± 1.3	
Standard Deviation over rxns			± 0.2	
CH ₃ CHFO• + CH ₄ = CH ₃ O• + CH ₃ CH ₂ F -253.530783 -40.447961 -114.989112 -178.963776 -17.81 5.15 -65.42	0.025856	16.22487	-58.7	± 1.2
CH ₃ CHFO• + CH ₃ CH ₃ = CH ₃ CH ₂ O• + CH ₃ CH ₂ F -253.530783 -79.717768 -154.268107 -178.963776 -20.05 -3.01 -65.42	0.016668	10.45932	-58.8	± 1.2
Reported Δ _f H° _(298K) kcal mol ¹			-58.8 ± 1.2	
Standard Deviation over rxns			± 0.2	

$CH_2FCHFOH + CH_4 = CH_3CH_2OH + CH_2F_2$ -353.429924 -40.447961 -154.926666 -238.938973 -17.81 -56.21 -108.07	0.012246	7.684475	-154.2	± 1.6
CH_FCHFOH +CH_CH_CH_ = CH_CH_OH + CH_CH_CHF_				
-353.429924 -118.990915 -154.9266666 -317.498882 -25.02 -56.21 -125.82	-0.00471	-2.95494	-154.1	± 1.9
Reported A/H°,, kcal mol ⁻¹			-154.2 ± 1.7	
Standard Deviation over rxns			± 0.6	
CF ₂ HCH ₂ OH + CH ₄ = CH ₃ CH ₂ OH + CH ₂ F ₂ -353.431533 -40.447961 -154.926666 -238.938973 -17.81 -56.21 -108.07	0.013855	8.694137	-155.2	± 1.6
CF ₂ HCH ₂ OH + CH ₃ CH ₃ = CH ₃ CH ₂ OH + CH ₃ CHF ₂ -353.431533 -79.717768 -154.926666 -278.225303 -20.05 -56.21 -120.87	-0.00267	-1.67419	-155.4	± 1.8
Reported Δ _f H° _(298K) kcal mol ⁻¹			-155.3 ± 1.7	
Standard Deviation over rxns			± 0.1	
CH ₃ CF ₂ OH + CH ₄ = CH ₃ CH ₂ OH + CH ₂ F ₂ -353.462472 -40.447961 -154.926666 -238.938973 -17.81 -56.21 -108.07	0.044794	28.10864	-174.6	± 1.6
CH ₃ CF ₂ OH + CH ₃ CH ₂ CH ₃ = CH ₃ CH ₂ OH + CH ₃ CH ₂ CHF ₂ -353.462472 -118.990915 -154.926666 -317.498882 -25.02 -56.21 -125.82	0.027839	17.46922	-174.5	± 1.5
Reported Δ_{r} H° ₍₂₀₀₄₎ kcal mol ⁻¹			-174.5 ± 1.5	
Standard Deviation over rxns			± 0.1	
CH2FC • FOH + CH ₄ = CH ₃ CH ₂ O • + CH ₂ F ₂ -352.776406 -40.447961 -154.268107 -238.938973 -17.81 -3.01 -108.07	0.017287	10.84775	-104.1	± 1.5
CH ₂ FC • FOH + CH ₃ CH ₂ CH ₃ = CH ₃ CH ₂ O • + CH ₃ CH ₂ CHF ₂ -352.776406 -118.990915 -154.268107 -317.498882 -25.02 -3.01 -125.82	0.000332	0.208333	-104.0	± 1.4
Reported Δ _f H° _(298K) kcal mol ⁻¹			-104.1 ± 1.5	
Standard Deviation over rxns			± 0.1	
C•HFCFHOH + CH ₄ = CH ₃ O• + CH ₃ CHF ₂ -352.778474 -40.447961 -114.989112 -278.225303 -17.81 5.15 -120.87	0.01202	7.542658	-105.5	± 1.7
C•HFCFHOH + CH ₃ CH ₃ = CH ₃ O• + CH ₃ CH ₂ CHF ₂ -352.778474 - 79.717768 -114.989112 -317.498882 -20.05 5 15 -125 82	0.008248	5.175694	-105.8	± 1.8
Reported Δ H° kcal mol ⁻¹			-105.6 + 1 7	
Standard Deviation over rxns			± 0.2	
CHF ₂ C•HOH + CH ₄ = CH ₃ O• + CH ₃ CHF ₂ -352.773245 -40.447961 -114.989112 -278.225303 -17.81 5.15 -120.87	0.006791	4.261414	-102.5	± 1.7
CHF ₂ C•HOH + CH ₃ CH ₃ = CH ₃ O• + CH ₃ CH ₂ CHF ₂ -352.773245 -79.717768 -114.989112 -317.498882 -20.05 5.15 -125.82	0.003019	1.89445	-102.2	± 1.8
Reported Δ _f H° _(298K) kcal mol ⁻¹			-102.3 ± 1.7	
Standard Deviation over rxns			± 0.2	
$CH_2FCHFO \bullet + CH_4 = CH_3CH_2O \bullet + CH_2F_2$ -352.768218 - 40.447961 -154.268107 -238.938973 -17.81 -3.01 -108.07	0.009099	5.709704	-99.0	± 1.5
CH ₂ FCHFO• + CH ₃ CH ₃ = CH ₃ CH ₂ O• + CH ₃ CHF ₂ -352.768218 -79.717768 -154.268107 -278.225303 -20.05 -3.01 -120.87	-0.00742	-4.65863	-99.2	± 1.7
Reported Δ_fH° (298K) kcal mol ⁻¹			-99.1 ± 1.6	
Standard Deviation over rxns			± 0.1	

C•F ₂ CH ₂ OH + CH ₄ = CH ₃ CH ₂ O• + CH ₂ F ₂ -352.773245 -40.447961 -154.268107 -238.938973 -17.81 -3.01 -108.07	0.014126	8.864192	-102.1	± 1.5
C•F ₂ CH ₂ OH + CH ₃ CH ₃ = CH ₃ CH ₂ O• + CH ₃ CHF ₂ -352.773245 -79.717768 -154.268107 -278.225303 -20.05 -3.01 -120.87	-0.0024	-1.50414	-102.3	± 1.7
Reported Δ _t H° ₍₂₉₈₆₎ kcal mol ⁻¹			-102.2 ± 1.6	
Standard Deviation over rxns			± 0.2	
$CHF_{2}CH_{2}O \bullet + CH_{4} = CH_{3}CH_{2}O \bullet + CH_{2}F_{2}$ -352.767873 -40.447961 -154.268107 -238.938973 -17.81 -3.01 -108.07	0.008754	5.493214	-98.8	± 1.5
CHF ₂ CH ₂ O• + CH ₃ CH ₃ = CH ₃ CH ₂ O• + CH ₃ CHF ₂ -352.767873 -79.717768 -154.268107 -278.225303 -20.05 -3.01 -120.87	-0.00777	-4.87512	-99.0	1.7
Reported $\Delta_{i} H^{\circ}_{(2000)}$ kcal mol ⁻¹			-98.9 ± 1.6	
Standard Deviation over rxns			± 0.2	
CH ₂ •CF ₂ OH + CH ₄ = CH ₃ O• + CH ₃ CHF ₂ -352.800434 -40.447961 -114.989112 -278.225303 -17.81 5.15 -120.87	0.03398	21.32276	-119.2	± 1.7
CH ₂ •CF ₂ OH + CH ₃ CH ₃ = CH ₃ O• + CH ₃ CH ₂ CHF ₂ -352.800434 -79.717768 -114.989112 -317.498882 -20.05 5.15 -125.82	0.030208	18.95579	-119.6	± 1.8
Reported Δ_fH° _(298K) kcal mol ⁻¹			-119.4 ± 1.7	
Standard Deviation over rxns			± 0.2	
CH ₃ CF ₂ O• + CH ₄ = CH ₃ CH ₂ O• + CH ₂ F ₂ -352.786755 -40.447961 -154.268107 -238.938973 -17.81 5.15 -108.07	0.027636	17.34184	-110.6	± 1.5
CH ₃ CF ₂ O• + CH ₃ CH ₂ CH ₃ = CH ₃ CH ₂ O• + CH ₃ CH ₂ CHF ₂ -352.786755 -118.990915 -154.268107 -317.498882 -25.02 5.15 -125.82	0.010681	6.702424	-110.5	± 1.8
Reported Δ _f H° _(298K) kcal mol ⁻¹			-110.6 ± 1.6	
Standard Deviation over rxns			± 0.1	

Step 1, X_i = (-101.60-101.86)/2 = -101.73

Step 2, $(X_i - \mu_1) = (-101.73 + 101.60)^2 = 0.0169$

 $(X_i - \mu_2) = (-101.73 + 101.86)^2 = 0.0169$

Step 3, 1/2 (0.0169 + 0.0169) = 0.0169

Step 4, square root of $0.0169 = 0.13 = \pm 0.1$

Figure 21. Potential energy profile of C-C and C-O internal rotors for CH₂FCH₂OH. The solid lines indicate Fourier series expansion.

Figure 22. Potential energy profile of C-C and C-O internal rotors for CH₃CHFOH. The solid lines indicate Fourier series expansion.

Figure 23. Potential energy profile of C-C and C-O internal rotors for C • HFCH₂OH. The solid lines indicate Fourier series expansion.

Figure 24. Potential energy profile of C-C and C-O internal rotors for C • HFCH₂OH. The solid lines indicate Fourier series expansion.

(A) C-C Internal Rotor

(B) C-O Internal Rotor

Figure 25. Potential energy profile of C-C and C-O internal rotors for CH₂FCH₂O•. The solid lines indicate Fourier series expansion.

Figure 26. Potential energy profile of C-C and C-O internal rotors for CH₂ • CHFOH. The solid lines indicate Fourier series expansion.

(A) C-C Internal Rotor

Figure 28. Potential energy profile of C-C and C-O internal rotors for CH₃CHFO • .The solid lines indicate Fourier series expansion.

Figure 29. Potential energy profile of C-C and C-O internal rotors for CH₂FCHFOH. The solid lines indicate Fourier series expansion.

Figure 30. Potential energy profile of C-C and C-O internal rotors for CH₃CHFO • .The solid lines indicate Fourier series expansion.

Figure 31. Potential energy profile of C-C and C-O internal rotors for CH₂FCHFOH. The solid lines indicate Fourier series expansion.

Figure 32. Potential energy profile of C-C and C-O internal rotors for CH₂FC • FOH. The solid lines indicate Fourier series expansion.

Figure 33. Potential energy profile of C-C and C-O internal rotors for C • HFCFHOH. The solid lines indicate Fourier series expansion.

Figure 34. Potential energy profile of C-C and C-O internal rotors for CH₂FCHFO•. The solid lines indicate Fourier series expansion.

Figure 35. Potential energy profile of C-C and C-O internal rotors for CHF₂C • HOH. The solid lines indicate Fourier series expansion.

Figure 36.Potential energy profile of C-C and C-O internal rotors for C • F₂CH₂OH. The solid lines indicate Fourier series expansion.

(A) C-C Internal Rotor

Figure 37. Potential energy profile of C-C and C-O internal rotors for CHF₂CH₂O•. The solid lines indicate Fourier series expansion.

Figure 38.Potential energy profile of C-C and C-O internal rotors for CH₂ • CF₂OH. The solid lines indicate Fourier series expansion.

Figure 39. Potential energy profile of C-C and C-O internal rotors for CH₃CF₂O•. The solid lines indicate Fourier series expansion.

Supporting information

Supporting information is available, Cartesian Coordinates; Z-matrixes, vibration frequencies, moments of inertia, the method of standard deviation, Optimized Geometries, and C-C and C-O internal rotors potential energy profile for target fluorinated ethanol and their related radicals are included **(Figures 21-40)**^[37-40].

CONCLUSION

Thermodynamic properties of 19 mono and di-fluoro ethanols and their related radicals are calculated using the ab initio and Global-hybrid meta-GGA density function methods. Isodesmic work reactions are employed for cancellation of calculation errors. Multiple work reactions are utilized to calculate standard enthalpy of formation at the Gaussian M06-2X calculation level. Optimized geometries and frequencies are used to determine entropy and heat capacity with M06-2x/6-31+g (d,p) level of calculation. Intermolecular torsion potential curves at the M-06-2x/6-31+g (d,p) level of calculation are used to calculate hindered internal rotation contributions to heat capacity and entropy with a correction to the calculated heat capacity and entropy. The Thermochemical properties: Entropy, Heat Capacities at 298°- 1500°K, Standard Enthalpy of formation 298° K, and the C–F and C–H Bond Dissociation Energies (BDEs) for Mono and Difluorinated Ethanols and Radicals: CH_3 -xCHFxOH, CH_3CH_2 -xFxOH have been calculated. The C-H bond energies range from 102.2 to 107.2 Kcal mol⁻¹ on the methyl carbons, and from 97.3 to 105.2 Kcal mol⁻¹ on the secondary ethyl carbons.

ACKNOWLEDGEMENTS

We acknowledge the NJIT Advanced Research Computing Services for significant help in providing the computer calculation software.

REFERENCES

- 1. Wang H, Castillo A, Bozzelli JW. Thermochemical properties enthalpy, entrop, and heat capacity of C1-4 fluorinated hydrocarbons. J Phys Chem 2015; 119: 8202-8215.
- Wang H, Bozzelli JW. Thermochemical properties and Bond Dissociation Energy for Fluorinated Methanol and fluorinated methyl hydroperoxides. J Phys Chem 2016; 120: 6998-7010.
- 3. Wallington TJ, et al. The Environmental Impact of CFC Replacements HFCs and HCFCs. Environ Sci Technol 1994; 28: 320A-326A.
- 4. Schneider, WF, Wallington, TJ. *Ab Initio* Investigation of the Heats of Formation of Several Trifluoromethyl Compounds. J Phys Chem 1993; 97: 12783-12788.
- 5. Frisch MJ, et al. Gaussian 09; Gaussian, Inc.: Wallingford, CT 2009.
- Wang H, Castillo Á, Bozzelli JW. Thermochemical Properties Enthalpy, Entropy, and Heat Capacity of C1–C4 Fluorinated Hydrocarbons. Fluorocarbon Group Additivity. J Phys Chem A 2015; 119: 8202-8215.
- NIST Computational Chemistry Comparison and Benchmark Database. NIST Standard Reference Database Number, Release 16a; Johnson, R. D., III, Ed.; NIST: Gaithersburg, MD 2013.
- 8. Sheng C. Elementary, Pressure Dependent Model for Combustion of C1, C2 and Nitrogen Containing Hydrocarbons: Operation of A Pilot Scale Incinerator and Model Comparison. Ph.D. dissertation; New Jersey Institute of Technology 2002.
- 9. Becke A D. Density-functional Thermochemistry. III. The Role of Exact Exchange. J Chem Phys 1993; 98: 5648-5652.
- 10. Lay TH, et al. Ab Initio Study of α-Chlorinated Ethyl Hydro510peroxides CH 3CH200H, CH3CHCl00H, and CH3CCl200H. Conformational Analysis, Internal Rotation Barriers, Vibrational Frequencies, and Thermodynamic Properties. J Phys Chem 1996; 513100: 8240-8249.
- 11. NIST Computational Chemsitry Comparison and Benchmark Database, NIST Standard Reference Database Number 101, Release 16a; Johnson, R. D. III, Ed.; NIST: Gaithersburg 2013.
- 12. Schneider WF, Wallington TJ. Ab Initio Investigation of the Heats of Formation of Several Trifluoromethyl Compounds. J Phys 420 Chem 1993; 97: 12783-12788.
- 13. Sawada H. Fluorinated Peroxides. Chem Rev 1996; 96: 1779-1808.
- 14. Hayman GD, Derwent RG. Atmospheric Chemical Reactivity and Ozone-Forming Potentials of Potential CFC Replacements. Environ Sci Technol 1997; 31: 327-336.
- 15. El-Taher S. Ab Initio and DFT Investigation of Fluorinated Methyl Hydroperoxides. Structures, Rotational Barriers, and Thermo chemical Properties. J Fluorine Chem 2006; 127: 54-62.
- 16. Reints W, et al. O–O Bond Dissociation Enthalpy in Di(trifluoromethyl) Peroxide (CF300CF3) as Determined by Very Low Pressure Pyrolysis. Density Functional Theory Computations on O–O and O–H Bonds in (Fluorinated) Derivatives. J Phys Chem 2000; 104: 10713-10720.
- 17. Harvey J, Tuckett RP, Bodi A. A Halomethane Thermochemical Network from iPEPICO Experiments and Quantum Chemical Calculations. J Phys Chem 2012; 116: 9696-9705.
- 18. Kosmas AM, et al. Structural and Heat of Formation Studies of Halogenated Methyl Hydro-peroxides. Chem Phys 2010; 371: 36-42.
- Wang H, Bozzelli J W. Thermochemical Properties (ΔfH°(298 K),S°(298 K),C p(T)) and Bond Dissociation Energies for C1–C4 Normal Hydroperoxides and Peroxy Radicals. J Chem Eng 2016; 61: 1836-1849.

RRJCHEM | Volume 10 | Issue 4 | April, 2021

- 20. Wang H, Castillo Á, Bozzelli JW. Thermochemical Properties Enthalpy, Entropy, and Heat Capacity of C1–C4 Fluorinated Hydrocarbons. Fluorocarbon Group Additivity. J Phys Chem 2015; 119: 8202-8215.
- 21. Frisch MJ, et al. Gaussian 09. Gaussian Inc. Wallingford. CT, USA. 2009.
- 22. Curtiss LA, Redfern PC, Raghavachari, K. Gaussian-4 Theory. J Chem Phys. 2007; 126: 084-108.
- 23. Montgomery JA, et al. A Complete Basis Set Model Chemistry. Use of the Minimum Population Localization Method. J Chem Phys 2000; 112:6532-6542.
- 24. Ochterski JW, Petersson GA, Montgomery JA. A Complete Basis Set Model Chemistry. V. Extensions to Six or More Heavy Atoms. J Chem Phys 1996; 104: 2598-2619.
- 25. Wang H, Bozzelli JW. Thermochemistry and Kinetic Analysis on Unimolecular Dissociation Reaction of Oxiranyl Radical. A Theoretical Study. Chem Phys Chem 2016; 17: 1983-1992.
- 26. Ruscic B. Active Thermochemical Tables. Sequential Bond Dissociation Enthalpies of Methane, Ethane, and Methanol and the Related Thermochemistry. J Phys Chem 2015; 119: 810-837.
- 27. Burke SM, Simmie JM, Curran HJ. Critical Evaluation of Thermochemical Properties of C1 –C4 Species: Updated Group Contributions to Estimate Thermochemical Properties. J Phys Chem 2015;44:013101.
- 28. Chase MWJ. NIST-JANAF Thermochemical Tables. J Phys Chem 1998; 9: 1-1951.
- 29. Luo X, Fleming P R, Rizzo T R. Vibrational Overtone Spectroscopy of the 4 vOH+vOH' Combination Level of HOOH via Sequential Local Mode –local Mode Excitation. J Chem Phys 1992; 96: 5659-5667.
- 30. Bodi A, et al. Photoion Photoelectron Coincidence Spectroscopy of Primary Amines RCH 2NH2 (R = H, CH3,C 2H5,C 3H7, i-C3H7). Alkylamine and Alkyl Radical Heats of Formation by Isodesmic Reaction Networks. J Phys Chem A 2006; 110: 13425-13433.
- 31. Csontos J, et al. High-Accuracy Thermochemistry of Atmospherically Important Fluorinated and Chlorinated Methane Derivatives. J Phys Chem A 2010; 114: 13093-13103.
- 32. NIST Computational Chemistry Comparison and Benchmark Database. NIST Standard Reference Database Number 101, Release 16a; Johnson, R. D., III, Ed.; NIST: Gaithersburg, MD. 2013.
- 33. Becke AD. Density-functional Thermochemistry. III. The Role of Exact Exchange. J Chem Phys. 1993; 98: 5648-5652.
- 34. Sheng C, Elementary. Pressure Dependent Model for Combustion of C1, C2 and Nitrogen Containing Hydrocarbons. Operation of A Pilot Scale Incinerator and Model Comparison. Ph.D. dissertation .New Jersey Institute of Technology. 2002.
- 35. Math is Fun. Advanced. 2017. Standard Deviation and Variance. 2019.
- 36. Ruscic B, Active Thermochemical Tables. Sequential Bond Dissociation Enthalpy of Methane, Ethane, and Methanol and related Thermochemistry. J Phys Chem 2015; 119: 7810-7837
- 37. Argonne National Laboratory, 2019, Active Thermochemical Tables, US. Department of Energy 2017.
- 38. Myrna H M, et al. Theoretical Prediction of the Heats of Formation of C2H50* Radicals Derived From Ethanol and of the Kinetics of beta-C-C Scission in the Ethoxy Radical. J Phys Chem 2007; 111: 113-126.
- 39. National Computational Science Institute. Computational Chemistry Methods. 2020.
- 40. Expanding the Limits of Computational Chemistry. Density Function Method. 2020.