Research and Reviews: Journal of Chemistry

Thermodynamics of Complex Formation (conductometrically) Between Cu(II) ion and 4-phenyl -1- diacetyl monoxime –3 -thiosemicarbazone (BMPTS) in Ethanol at Different Temperatures.

EA Gomaa*, KM Ibrahim, and NM Hassan.

Chemistry Department, Faculty of Science, Mansoura University, 35516 – Mansoura, Egypt.

Research Article

Received: 22/11/2013 Revised: 15/12/2013 Accepted: 29/12/2013

*For Correspondence

Chemistry Department, Faculty of Science, Mansoura University, 35516 – Mansoura, Egypt.

Keywords: Association constants; formation constants; Gibbs free energies; solvation free energies; enthalpy and entropy of solvation. The association constant ,formation constants and Gibbs free energies are calculated from the conductometric titration curves of CuCl₂ with 4-phenyl-2-diacetyl monoxime-3-thiosemicarbazone (BMPTS) in absolute ethanol at different temperatures(293.15 K, 298.15 K, 303.15 and 308.15 K). On drawing the relation between molar conductance and the ratio of metal to ligand concentrations, different lines are obtained indicating the formation of 1:2, 1:1 and 2:1 (M:L) stoichiometric complexes. The formation constants of different complexes in absolute ethanol follow the order: K_f (2:1) $\cdot K_f$ (1:2) for (M: L). As the temperature increases, the formation constants and association constants of different complexes increase. The enthalpy and entropy of formation and association of CuCl₂ with (BMPTS) were also estimated and their values were also discussed.

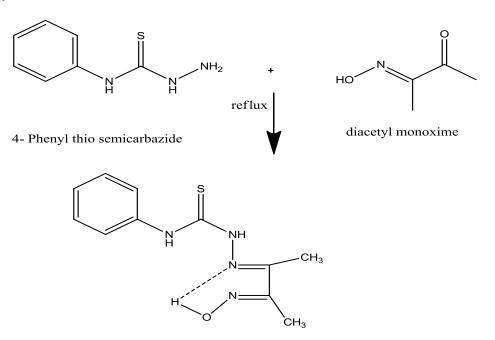
ABSTRACT

INTRODUCTION

Transition metal ions have a strong role in bio-inorganic chemistry and redox enzyme systems and may provide the basis of models for active sites of biological systems ^[1]. Copper(II) ion is a biologically active, essential ion, cheating ability and positive redox potential allow participation in biological transport reactions. Cu(II) complexes possess a wide range of biological activity and are among the most potent antiviral, antitumor and anti inflammatory agents ^[2]. The hydrazones and their metal complexes have many important applications in analytical chemistry and pharmacology ^[3,4,5]. Schiff bases hydrazone derivatives and their metal complexes have been studied for their interesting and important properties, e.g., antibacterial ^[6,7], antifungal ^[8], antioxidant ^[9], anticancer ^[10] and catalytic activity in oxidation of cyclohexene ^[11]. Moreover, Schiff bases hydrazone derivatives are versatile ligands and they offer the possibility of different modes of coordination towards transition metal ions. Also, some of these derivatives have been applied as iron chelator drugs in therapy of anemia ^[12] and treatment of neuropathic pain ^[13,14,15].

This work deals with the Determination of solvation free energies $(\Delta G)_s$, Enthalpy changes of solvation $(\Delta H)_s$ and the entropy of solvation (ΔS) from conductometric technique. Thus, thermodynamic studies of complexation reactions of this Schiff base with transition metal ions is important on the thermodynamics of complexation reaction, but also lead to a better understanding of the high selectivity of this ligand towards different metal cations.

The aim of this work is the evaluation the non-covalent behavior of $CuCl_2$ with (BMPTS) in absolute ethanol solutions at 294.15 K. These non-covalent interactions can help us for analysis of salts in bodies and environnement ^[16].


EXPERIMENTAL

Materials and Methods

All manipulations were performed under aerobic conditions. The cupper chloride and the used reagents were Merck pure.

Preparation of PDMSC

4-phenyl-1-diacetylmonoxime-3-thiosemicarbazone (BMPTS) was prepared by boiling an EtOH solution of 4-phenylthiosemicarbazone (1.7g, 1mmole) with an EtOH solution of diacetylmonoxime(1g, 1mmole) under reflux for two hours. The solution was then concentrated to one half of its volume and cooled. Yellowish white needles separated which were recrystallized from hot absolute EtOH. (M.p: 192 O C; yield 80%). The purity of the compound was checked by TLC.

4- Phenyl- 1-diacetyl monoxime-3-thio semicarbazone [BMPTS]

Scheme 1: The outline of the synthesis of 4-phenyl-2-diacetyl monoxime-3-thiosemicarbazone (BMPTS)

Conductance measurement

The conductometric titration of the CuCl₂ ($1x10^{-4}$) mole/L against the ligand ($1x10^{-3}$) mole/L in absolute ethanol was performed with 0.2 ml interval additions from (BMPTS) solution. The specific conductance values were recorded using conductivity bridge AdWa, AD 3000 with a cell constant equal to 1 cm ⁻¹. The temperature was adjusted at 293.15 K, 298.15 K, 303.15 K and 308.15 K.

RESULTS AND DISCUSSION

The specific conductance values (K_s) of different concentrations of CuCl₂ in absolute ethanol were measured experimentally in absence and in the presence of ligand at different temperatures (293.15 K, 298.15 K, 303.15 K and 308.15 K).

The molar conductance $(/\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$}\mbox{$\mbox{$}\mb$

$$\Lambda_m = \frac{(K_s - K_{solv})K_{cell} \times 1000}{C}$$

Where K_s and K_{solv} are the specific conductance of the solution and the solvent, respectively; K_{cell} is the cell constant and C is the molar concentration of the CuCl₂ solutions.

The limiting molar conductances (/_M) at infinite dilutions were estimated for CuCl₂ in absolute ethanol alone at different temperatures by extrapolating the relation between /_m and C_{m^{1/2}} to zero concentration as shown in Figure 1.

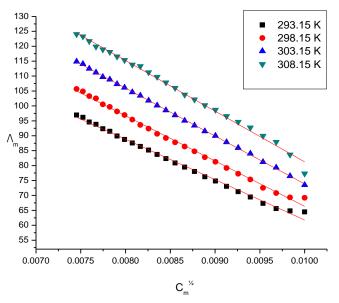
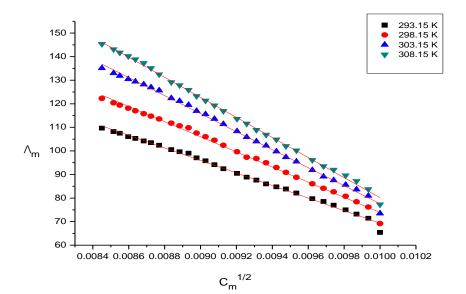
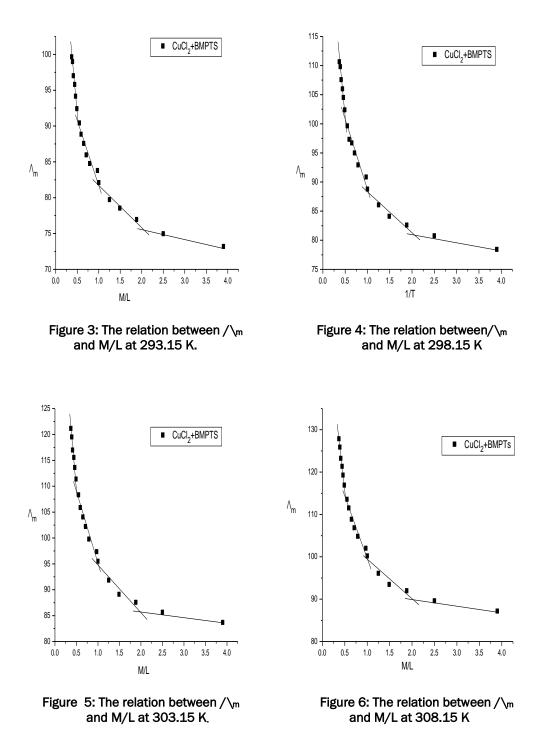
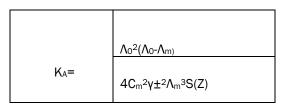


Figure 1: The relation between molar conductance (/ \mbox{m}) and ($C_m^{\frac{1}{2}}$) of CuCl₂ alone in absolute ethanol at different temperatures (293.15K, 298.15 K, 303.15 K and 308.15 K).

The limiting molar conductances (/ λ_0) at infinite dilutions were estimated for CuCl₂ in the presence of the ligand (BMPTS) by extrapolating the relation between / λ_m and Cm^{1/2} to zero concentration Figure 2.


Figure 2: The relation between molar conductance (/ \mbox{m}) and (Cm⁴²) of CuCl₂ in presence of BMPTS at different temperatures (293.15K, 298.15 K, 303.15 K and 308.15 K).

By drawing the relation between molar conductance (/ \mbox{m}) and the molar ratio of metal to ligand (M/L) concentrations (Figure 3,4,5,6), different lines are obtained with sharp breaks indicating the formation of 1:2, 1:1 and 2:1 (M:L) stoichiometric complexes.

The experimental data of $(/\mbox{$\sc m})$ and $(/\mbox{$\sc m})$ were analyzed for the determination of association and formation constants for each type of the stoichiometric complexes.

The association constants of CuCl₂ in the presence of ligand (BMPTS) in absolute ethanol at different temperatures (293.15 K, 298.15 K, 303.15 K and 308.15 K) for 2:1,1:1 and 1:2 (M:L) were calculated by using equation ^[17,18]:

Where $(/\mbox{$\n_m$},/\mbox{$\n_0$})$ are the molar and limiting molar conductance of CuCl₂ in presence of HI respectively; C_m is molar concentration of CuCl₂, $\gamma \pm$ is activity coefficient S(Z) is Fuoss-shedlovsky factor, equal with unity for strong electrolytes ^[19]. The calculated association constants are shown in Table 1.

Table 1: Association constants of CuCl₂ with (BMPTS) at different temperatures (293.15 K, 298.15 K, 303.15 K and 308.15 K).

C[ligand]	Cm[CuCl2]	K _A			
	Temp	293.15 K	298.15 K	303.15 K	308.15 K
4.76E-05	9.52E-05	3.69E+09	3.92E+09	4.15E+09	4.24E+09
6.25E-05	9.38E-05	3.55E+09	3.80E+09	4.03E+09	4.14E+09
7.41E-05	9.26E-05	3.32E+09	3.57E+09	3.81E+09	3.94E+09
9.09E-05	9.09E-05	3.00E+09	3.25E+09	3.49E+09	3.53E+09
1.12E-04	8.88E-05	2.70E+09	2.95E+09	3.20E+09	3.25E+09
1.33E-04	8.67E-05	2.50E+09	2.75E+09	2.99E+09	2.98E+09
1.53E-04	8.47E-05	2.34E+09	2.51E+09	2.68E+09	2.69E+09
1.67E-04	8.33E-05	2.19E+09	2.37E+09	2.54E+09	2.56E+09
1.85E-04	8.15E-05	2.01E+09	2.19E+09	2.37E+09	2.40E+09
2.02E-04	7.98E-05	1.85E+09	2.03E+09	2.21E+09	2.25E+09

The Gibbs free energies of association (ΔG_A) were calculated from the association constant ^[20, 21] by applying equation:

$\Delta G_A = -RT In K_A$ (3)

Where R is the gas constant (8.341 J) and T is the absolute temperature . The calculated Gibbs free energies were presented in Table 2.

Table 2: Gibbs free energies of association of CuCl₂ with (BMPTS) at different temperatures (293.15 K, 298.15 K, 303.15 K and 308.15 K).

C _[ligand]	Cm[CuCl2]	$\Delta G_A(k J/mol)$			
	_				
	Temp	293.15 K	298.15 K	303.15 K	308.15 K
4.76E-05	9.52E-05	-53.6906	-54.7572	-55.8189	-56.7921
6.25E-05	9.38E-05	-53.5963	-54.6766	-55.7461	-56.7346
0.201 00	0.002.00	00.0000	01.01.00	00.1 101	0011010
7.41E-05	9.26E-05	-53.4352	-54.5260	-55.6049	-56.6078
0.005.05	0.005.05	50 4050	540040	FF 00 1	50 0005
9.09E-05	9.09E-05	-53.1853	-54.2912	-55.384	-56.3235
1.12E-04	8.88E-05	-52,9313	-54.0533	-55.1606	-56.113
• ·	0.002.00	01.0010	0	00.2000	00.220
1.33E-04	8.67E-05	-52.7384	-53.8737	-54.9932	-55.8885
1.53E-04	8.47E-05	-52.5778	-53.6546	-54.7196	-55.6307
1.000-04	0.472-05	-52.5110	-33.0340	-04.7100	-33.0307
1.67E-04	8.33E-05	-52.4176	-53.5057	-54.5809	-55.501
4 055 0 4	0 4 5 5 0 5	50 04 45	50.0400	F 4 4 0 4 0	55 0004
1.85E-04	8.15E-05	-52.2145	-53.3169	-54.4048	-55.3361
2.02E-04	7.98E-05	-52.0098	-53.1256	-54.2260	-55.1679
2.022.01	1.000 00	02.0000	00.1200	0 112200	00.1010

The formation constants (K_f) for CuCl₂ complexes were calculated for each type of complexes (1:2), (1:1) and (2:1) (M: L) ^[21, 22] by using equation:

$$K_{f} = \frac{\mathbf{\Lambda}_{M} - \mathbf{\Lambda}_{obs}}{(\mathbf{\Lambda}_{obs} - \mathbf{\Lambda}_{ML})[L]} \qquad (4)$$

Where $/_M$ is the limiting molar conductance of the CuCl₂ alone, $/_{obs}$ is the molar conductance of solution during titration and $/_{ML}$ is the molar conductance of the complex.

The obtained values (K_f) for CuCl₂-ligand stoichiometric complexes are presented in Table 3.

Table 3: Formation constants for 1:2, 1:1 and 2:1 (M/L) complexes in 80%V ethanol at different temperatures (293.15 K, 298.15 K, 303.15 K and 308.15 K).

•		K _f		
		1:2 (M/L)		
Cm	293.15 K	298.15 K	303.15 K	308.15 K
8.33E-05	9.34E+05	1.60E+06	3.65E+06	6.07E+06
8.24E-05	2.15E+05	2.41E+05	2.73E+05	2.87E+05
8.06E-05	1.21E+05	1.31E+05	1.42E+05	1.47E+05
7.98E-05	8.33E+05	8.81E+04	9.45E+04	9.57E+04
7.89E-05	5.70E+04	5.96E+04	6.22E+04	6.51E+04
		1:1(M/L)		
Cm	293.15 K	298.15 K	303.15 K	308.15 K
9.09E-05	1.51E+06	2.94E+06	7.20E+06	1.35E+07
8.98E-05	4.78E+05	5.84E+05	6.95E+05	7.49E+05
8.88E-05	2.10E+05	2.34E+05	2.57E+05	2.68E+05
8.77E-05	1.39E+05	1.51E+05	1.63E+05	1.70E+05
8.67E-05	9.99E+04	1.07E+05	1.14E+05	1.19E+05
		2:1(M/L)		
Cm	293.15 K	298.15 K	303.15 K	308.15 K
9.52E-05	3.70E+06	5.76E+06	1.96E+07	4.05E+07
9.51E-05	2.29E+06	4.72E+06	7.29E+06	2.13E+07
9.49E-05	2.35E+06	3.34E+06	6.12E+06	1.70E+07
9.38E-05	8.43E+05	9.82E+05	1.21E+06	1.39E+06
9.26E-05	3.56E+05	3.87E+05	4.33E+05	4.78E+05

The Gibbs free energies of formation for each stoichiometric complexes were calculated by using the equation:

$$\Delta G_f = -R T \ln K_f$$
 (5)

The calculated ΔG_f values are presented in Table 4..

Table 4: Gibbs free energies of formation of CuCl2 with (BMPTS) at different temperatures (293.15 K, 298.15 K, 303.15 K and 308.15 K).

		ΔG_{f}		
		(k J/mol)		
		1:2 (M/L)		
0.00	002 45 1/			208.45.1/
Cm	293.15 K	298.15 K	303.15 K	308.15 K
8.33E-05	-33.5062	-35.4186	-38.6101	-40.0132
8.24E-05	-29.9213	-30.7227	-31.5431	-32.1980
8.06E-05	-28.5327	-29.2024	-29,9039	-30.4900
7.98E-05	-27.6142	-28.2254	-28.8738	-29.4307
	-			
7.89E-05	-26.6914	-27.2560	-27.8632	-28.3955
		1:1(M/L)		
Cm	293.15 K	298.15 K	303.15 K	308.15 K
9.09E-05	-34.6947	-36,9222	-39,7946	-42.0630
8.98E-05	-31.8704	-32.9142	-33.9037	-34.6531
8.88E-05	-29.8736	-30.6410	-31.3942	-32.0260
8.77E-05	-28.8655	-29.5576	-30.2505	-30.8484
8.67E-05	-28.0579	-28.7026	-29.3582	-29.9335
		2:1(M/L)		
Cm	293.15 K	298.15 K	303.15 K	308.15 K
9.52E-05	-36.9100	-38.5867	-42.3140	-44.8741
				-
9.51E-05	-35.7210	-38.6948	-39.8286	-43.2330
9.49E-05	-35.8110	-37.2365	-39.3847	-42.6516
9.38E-05	-33.3122	-34.2007	-35.2945	-36.2303
9.26E-05	-31.2310	-31.8942	-32,712	-33,5029
0.202.00	01.2010	01.0012	VEN 12	0010020

The enthalpy (ΔH_A) for CuCl₂ complexes were calculated for each type of complexes (1:2), (1:1) and (2:1) (M:L) by using van 't Hoff equation ^[23,24]:

$$\frac{d\ln K}{dT} = \frac{\Delta H^{\ominus}}{RT^2}, \quad (6)$$

Where *R* is the gas constant (8.341 J) and T is the absolute temperature. By drawing the relation between log K_A and 1/T, different lines are obtained indicating the formation of 1:2,1:1 and 2:1 (M:L) stoichiometric complexes Table 7.

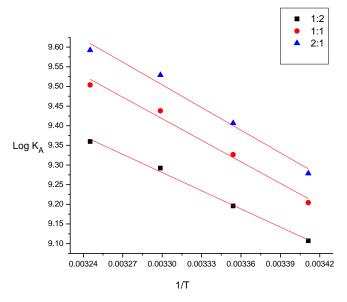


Figure 7: The relation between (log K_A) and (1/T).

From the relation between log K and 1/T, ΔH_A can be calculated for each type of complexes from the slope of each line (- $\Delta H/2.303R$). The entropy (ΔS_A) for CuCl₂ complexes were calculated for each type of complexes (1:2), (1:1) and (2:1) (M:L) by using equation :

$$\Delta G = \Delta H - T\Delta S \qquad (7)$$

Where (S) is the entropy of system.

The calculated values of (ΔH_A) and (ΔS_A) for CuCl₂-ligand stoichiometric complexes are presented in Table 5:

Table 5: The enthalpies and entropies of association of complexes at different temperatures (293.15 K, 298.15 K, 303.15 K and 308.15 K).

M:L	(ΔS _A)kJ/mol.K				(∆H _A)kJ/mol
Temp	293.15 K	298.15 K	303.15 K	308.15 K	
1:2	0.2752	0.2752	0.2754	0.2751	29.5695
1:1	0.2956	0.2960	0.2962	0.2956	35.0122
2:1	0.3033	0.3036	0.3039	0.3031	36.8291

By drawing the relation between log K_f and 1/T, different lines are obtained indicating the formation of 1:2,1:1 and 2:1 (M:L) stoichiometric complexes Figure 8.

The enthalpy (ΔH_f) for CuCl₂ complexes were calculated for each type of complexes (1:2) , (1:1) and (2:1) (M:L) by using Van 't Hoff equation .

The calculated values of (ΔH_f) and (ΔS_f) for CuCl₂-ligand stoichiometric complexes are presented in Table 6:

Table 6: The enthalpies and entropies of formation of complexes at different temperatures (293.15 K, 298.15 K, 303.15 K and 308.15 K).

M:L		(ΔH _f)kJ/mol			
Temp	293.15 k	298.15 K	303.15 K	308.15 K	
1:2	0.4385	0.4356	0.4366	0.4383	95.3191
1:1	0.5311	0.5314	0.5296	0.5317	119.4839
2:1	0.5499	0.5532	0.5493	0.5513	121.8139

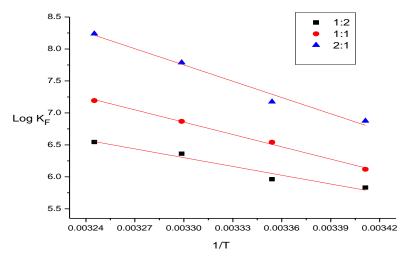


Figure 8: The relation between (log K_f) and (1/T).

Since the conductance of an ion depends mainly on its mobility, it is quite reasonable to treat the rate process taking place with the change of temperature on the basis of equation(8):

 $/_0 = A e^{-Ea/RT}$ (8)

where A is the frequency factor, R is the gas constant and Ea is the Arrhenius activation energy of the transfer process. Consequently, from the plot of $\log/\sqrt{0}$ vs. 1/T, the Ea values can be evaluated ^[25] as shown in Fig (9), giving high activation energy value due to solvation behavior.

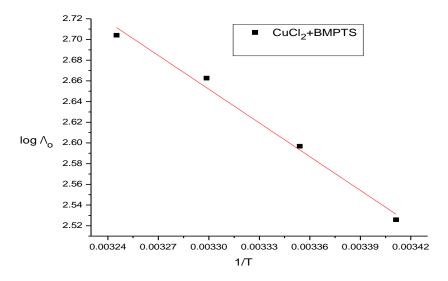


Figure 9: The relation between log /_o and 1/T. Ea=20.7985 kJ/mol

CONCLUSION

The stability constants for the complexation of copper(II) ion with (BMPTS) were determined conductometrically at different temperatures. Thermodynamic parameters of complexation were determined from the temperature dependence of the formation constant. The negative values of ΔG show the ability of the studied ligand to form stable complexes and the process trend to proceed spontaneously. However, the obtained positive values of ΔH means that enthalpy is not the driving force for the formation of the complexes. Furthermore, the positive values of ΔS indicate that entropy is responsible for the complexing process. The formation constants and Gibbs free energies of different complexes follow that order: K_f (2:1) , K_f (1:1) , K_f (1:2) for (M:L), and $\Delta G_f(2:1)$, $\Delta G_f(1:2)$ for (M:L)

REFERENCES

- 1. MV Angelusiu, SF Barbuceanu, C Draghici, GL Almajan. New Cu(II), Co(II), Ni(II) complexes with aroylhydrazone based ligand. Synthesis, spectroscopic characterization and in vitro antibacterial evaluation.Eur J Med Chem. 2010;45(5):2055–2062. F.
- 2. Vosburg WC, Cooper GR. Complex Ions. I. The Identification of Complex Ions in Solution by Spectrophotometric Measurements. J Am Chem Soc. 1941;63(2):437-442.
- 3. TA Yousef, TH Rakha, Usama El Ayaan, GM Abu El Reash. Synthesis, spectroscopic characterization and thermal behavior of metal complexes formed with (Z)-2-oxo-2-(2-(2-oxoindolin-3-ylidene)hydrazinyl)-N-phenylacetamide (H2OI). J Mol Str. 2012;1007:146-157.
- 4. RK Parashar, RC Sharma. Stability studies in relation to IR data of some schiff base complexes of transition metals and their biological and pharmacological studies. Inorg Chem Acta. 1988;151(3):201-208.
- 5. MCR Arguelles, et al. Synthesis, characterization and biological activity of Ni, Cu and Zn complexes of isatin hydrazones. J Inorg Biochem. 2004;98(3):313-321.
- 6. SM Emam, FA El-Saied SA. Abou El-Enein HA. El-Shater. Cobalt(II), nickel(II), copper(II), zinc(II) and hafnium(IV) complexes of N'-(furan-3-ylmethylene)-2-(4-methoxyphenylamino)acetohydrazide Spectrochim Acta Part A. 2009;72(2):291–297.
- AR Yaul, VV Dhande, AS Aswar. Synthesis, characterization, electrical and biological studies of VO(IV), MoO2(VI), WO2(VI), Th(IV) and UO2(VI) complexes with hydrazone ligand. Rev Roum Chim. 2010;55:537– 542.
- 8. AS EI-Tabl, FA EI-Saied, W Plass, AN AI-Hakimi. Synthesis, spectroscopic characterization and biological activity of the metal complexes of the Schiff base derived from phenylaminoacetohydrazide and dibenzoylmethane. Spectrochim Acta Part A. 2008;71(1):90–99.
- 9. Y Li, Z.-Y Yang, M.-F Wang. A Spectroscopic Study of 2-[4'-(Dimethylamino)phenyl]-benzothiazole Binding to Insulin Amyloid Fibrils. J Fluoresc. 2010;20(4):891–905.
- 10. SB Desai, PB Desai, KR Desai. Synthesis Of Some Schiff Bases, Thiazolidinones And Azetidinones Derived From 2,6-Diaminobenzo[1,2-D:4,5-D'] Bisthiazole And Their Anticancer Activities. Heterocycl Commun. 2001;7:83–90.
- 11. MS Niasari, A Amiri. Synthesis and characterization of alumina-supported Mn(II), Co(II), Ni(II) and Cu(II) complexes of bis(salicylaldiminato)hydrazone as catalysts for oxidation of cyclohexene with tertbuthylhydroperoxide. Appl Catal A. 2005;290:46–53.
- 12. MCR Arguelles, et al. Synthesis, characterization and biological activity of Ni, Cu and Zn complexes of isatin hydrazones. J Inorg Biochem. 2004;98:313–321.
- 13. P Yogeeswari, N Menon, A Semwal, M Arjun, D Sriram. Discovery of molecules for the treatment of neuropathic pain: Synthesis, antiallodynic and antihyperalgesic activities of 5-(4-nitrophenyl)furoic-2-acid hydrazones. Eur J Med Chem. 2011;46(7):2964–2970.
- 14. Zhibo Yang. Ph.D. thesis, Wayne State University, Detroit, Michigan, USA., 2005.
- 15. Kamal M Ibrahim, Magdy M Bekhit, Gaber M Abu EL-Reash. Transition metal complexes derived from 2hydroxyimino-3-(2'-hydrazonopyridyl)-butane.Transition Met Chem. 1991;16(2):189-192.
- 16. Gryzybkowski W, Pastewski R. Conductometric studies of Co(II), Ni(II), and Cu(II) nitrates in dimethyl sulfoxide solutions at 25 °C. Electrochimica Acta. 1980;25(3):279-285.
- 17. El-Shishtawi NA, Hamada MA, Gomaa EA. J Chem Eng Data. 2010;55:5422.
- 18. Hamada MA, El-Shishtawi NA, Gomaa EA. Conductometric evaluation of association constant for aqueous solutions of CoCl2 in the absence and presence of magnetic field. South Braz J Chem. 2009;17:33.
- 19. Gomaa EA. Solute-solvent interactions of some univalent-univalent salts with various organic solvents at 25 °C. Thermochimica Acta. 1987;120:183-190.
- 20. Gomaa EA. Theoretical contribution of solvation of AgBr in some organic solvents at 25°C.Thermochimica Acta. 1988;128:99-104.
- 21. Farid I El-Dossoki. Electric conductance and semi-empirical studies on two thiophene derivatives/metal cation complexation. J Mol Liq. 2008;142:53-56.
- 22. Rahmi-Nasrabadi M, Ahmedi F, Pourmor-tazari SM, Ganjal MR, Alizadeh K. Conductometric study of complex formations between some substituted pyrimidines and some metal ions in acetonitrile and the determination of thermodynamic parameters. J Mol Liq. 2009;144:97.
- 23. Atkins PW. 1978, Physical Chemistry, Oxford University Press.
- 24. Ives DJG. 1971, Chemical Thermodynamics, University Chemistry, Macdonald Technical and Scientific.