International Journal of Innovative Research in Computer and Communication Engineering

(A High Impact Factor, Monthly, Peer Reviewed Journal)
Vol. 6, Issue 4, April 2018

Three, Four, Five, Six, Seven, Nine and Thirty Two Number Systems in Digital Electronics

Dussa Sudha Mohan*
Vidya Bharathi Institute of Technology and Sciences, Pembarthi, Jangaon, India
E-mail: sudhamohan100@gmail.com

Abstract

Number system is a basis for counting various items. On hearing the word "number", all of us immediately think of the familiar decimal number system with its ' 10 ' digits: $0,1,2,3,4,5,6,7,8$ and 9 . Modern computers communicate and operate with binary numbers (combination of 0 's and 1 's). Let us consider decimal number ' 08 '. This number is represented in binary as ' 1000 '. In the example, if decimal number is considered, we require only 'two digits' to represent the number, whereas if binary number is considered we required 'four digits. Therefore, we can say that, when decimal numbers are represented in the binary form, they take more digits. For large decimal numbers peoples have to deal with very large binary strings and therefore, they do not like working with binary numbers. This fact gave rise to three number systems: Octal, Hexadecimal and Binary Coded Decimal (BCD). These number systems represent binary numbers in a compressed form. Therefore, these systems are now widely used to compress large strings of binary numbers. In this article, I introduce the new number systems such as three, four and five, six, seven, nine and thirty-two number systems.

Keywords: Computers; Decimal numbers; Octal, Hexadecimal and binary coded decimal

I. INTRODUCTION

1.1 Three Number System

Three means "three numbers". The three number system uses only "three" symbols (numbers) (Table 1). They are " 0 ", " 1 " and " 2 ". Hence, the radix (base) of the three number system is " 3 ".

Decimal number	Three number system
0	0
1	1
2	2
3	10
4	11
5	12
6	20
7	21
8	22
9	100
10	101
11	102
12	110
13	111

International Journal of Innovative Research in Computer and Communication Engineering

(A High Impact Factor, Monthly, Peer Reviewed Journal)
Vol. 6, Issue 4, April 2018

14	112
15	120
16	121
17	122
18	200
19	201
20	202

Table 1: Three number system.
1.1.1 Conversation of three number system into decimal number system:

- Procedure: If a three system number has to be converted into decimal number [1], then we should multiply, the positional values of each bit with the bit value and add shown in examples 1, 2, 3 and 4.

Example-1: $(112)_{3}=()_{10}$

$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2}$
$3^{2}[9]$	$3^{1}[3]$	$3^{0}[1]$
1×9	1×3	2×1
9	3	2
$(14)_{10}$		

Example-2: (100)3 = ($)_{10}$

$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
$3^{2}[9]$	$3^{1}[3]$	$3^{0}[1]$
1×9	0×3	0×1
9	0	0
$(9)_{10}$		

Example-3: (200)3 = ($)_{10}$

$\mathbf{2}$	$\mathbf{0}$	$\mathbf{0}$
$3^{2}[9]$	$3^{1}[3]$	$3^{0}[1]$
2×9	0×3	0×1
18	0	0
$(18)_{10}$		

Example-4: (201)3 = () ${ }_{10}$

$\mathbf{2}$	$\mathbf{0}$	$\mathbf{1}$
$3^{2}[9]$	$3^{1}[3]$	$3^{0}[1]$
2×9	0×3	1×1
18	0	0

International Journal of Innovative Research in Computer and Communication Engineering

(A High Impact Factor, Monthly, Peer Reviewed Journal)
Vol. 6, Issue 4, April 2018

1.1.2 Conversation of decimal number system into three number system:

Procedure: For converting decimal number into three number system, divide the decimal number by ' 3 ', writing down the reminder after each division. The reminders taken in reverse order (down to up) to form the three number system [2].

Example-1: (14) $10=()_{3}$

Solution:

3	14	
3	4	2
	1	1

(112) 3

Example-2: (9) $10=()_{3}$

Solution:

3	9	
3	$\mathbf{3}$	$\mathbf{0}$
	$\mathbf{1}$	$\mathbf{0}$
$(100)_{3}$		

Example-3: (18) $10=()_{3}$
Solution:

International Journal of Innovative Research in Computer and Communication Engineering

(A High Impact Factor, Monthly, Peer Reviewed Journal)
Vol. 6, Issue 4, April 2018

$(200)_{3}$

Example-4: (19) ${ }_{10}=()_{3}$

Solution:

3	19	
3	6	1
	2	0

$(201)_{3}$

1.2 Four Number System

Four means "four numbers". The four number system uses only "four" symbols (numbers). They are " 0 ", " 1 ", " 2 " and " 3 ". Hence, the radix (base) of the four number system is " 4 " (Table 2).

Decimal number	Four number system
0	0
1	1
2	2
3	3
4	10
5	11
6	12
7	13
8	20
9	21
10	22
11	23

International Journal of Innovative Research in Computer and Communication Engineering

(A High Impact Factor, Monthly, Peer Reviewed Journal)
Vol. 6, Issue 4, April 2018

12	30
13	31
14	32
15	33
16	100
17	101
18	102
19	103
20	110

Table 2: Four number system
1.2.1 Conversation of four number system into decimal number system:

Procedure: If a four system number has to be converted into decimal number, then we should multiply [3], the positional values of each bit with the bit value and add shown in examples 1, 2, 3 and 4.

Example-1: $(112)_{4}=()_{10}$

Solution:

$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2}$
$4^{2}[16]$	$4^{1}[4]$	$4^{0}[1]$
1×16	1×4	2×1
16	4	2
$(22)_{10}$		

Example-2: $(100)_{4}=()_{10}$

Solution:

$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
$4^{2}[16]$	$4^{1}[4]$	$4^{0}[1]$
1×16	0×4	0×1
16	0	0
$(16)_{10}$		

Example-3: $(200)_{4}=()_{10}$

Solution:

$\mathbf{2}$	$\mathbf{0}$	$\mathbf{0}$
$4^{2}[16]$	$4^{1}[4]$	$4^{0}[1]$
2×16	0×4	0×1
32	0	0

International Journal of Innovative Research in Computer and Communication Engineering

(A High Impact Factor, Monthly, Peer Reviewed Journal)
Vol. 6, Issue 4, April 2018

Example-4: $(110)_{4}=()_{10}$

Solution:

$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$
$4^{2}[16]$	$4^{1}[4]$	$4^{0}[1]$
1×16	1×4	0×1
16	4	0
$(20)_{10}$		

1.2.2 Conversation of decimal number system into four number system:

Procedure: For converting decimal number into four number system, divide the decimal number by ' 4 ', writing down the reminder after each division. The reminders taken in reverse order (down to up) to form the four number system [4].

Example-1: (22) $)_{10}=()_{4}$

Solution:

4	22	
4	5	2
	1	1

(112) 4

Example-2: (16) ${ }_{10}=()_{4}$
Solution:

4	16	
4	4	0
	1	0

$(100)_{4}$
Example-3: (32) ${ }_{10}=()_{4}$

International Journal of Innovative Research in Computer and Communication Engineering

(A High Impact Factor, Monthly, Peer Reviewed Journal)
Vol. 6, Issue 4, April 2018

Solution:

4	32	
4	8	0
	2	0

COOO_{4}
Example-4: (20) ${ }_{10}=()_{4}$

Solution:

$(110){ }_{4}$

1.3 Five Number System

Five means "five numbers". The five number system uses only "five" symbols (numbers). They are " 0 ", " 1 ", " 2 ", " 3 " and " 4 ". Hence, the radix (base) of the five number system is " 5 " (Table 3).

Decimal number	Five number system
0	0
1	1
2	2
3	3
4	4
5	10
6	11
7	12
8	13
9	14
10	20
11	21
12	22

International Journal of Innovative Research in Computer and Communication Engineering

(A High Impact Factor, Monthly, Peer Reviewed Journal)
Vol. 6, Issue 4, April 2018

13	23
14	24
15	30
16	313
17	32
18	33
19	34
20	40

Table 3: Five number system.

1.3.1 Conversation of five number system into decimal number system:

Procedure: If a five system number has to be converted into decimal number, then we should multiply, the positional values of each bit with the bit value and add shown in examples $1,2,3$ and 4.

Example-1: $(32)_{5}=()_{10}$

Solution:

$\mathbf{3}$	$\mathbf{2}$
$5^{1}[5]$	$5^{1}[1]$
3×5	2×1
15	2
$(17)_{10}$	

Example-2: $(100)_{5}=()_{10}$

Solution:

$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
$5^{2}[25]$	$5^{1}[5]$	$5^{0}[1]$
1×25	0×5	0×1
25	0	0
$(25)_{10}$		

Example-3: $(10)_{5}=()_{10}$

Solution:

$\mathbf{1}$	$\mathbf{0}$
$5^{1}[5]$	$5^{0}[1]$
1×5	0×1
5	0

International Journal of Innovative Research in Computer and Communication Engineering

(A High Impact Factor, Monthly, Peer Reviewed Journal)

Vol. 6, Issue 4, April 2018

(5) ${ }_{10}$

Example-4: $(110)_{5}=()_{10}$

Solution:

$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$
$5^{2}[25]$	$5^{1}[5]$	$5^{0}[1]$
1×25	1×5	0×1
25	5	0
$(30)_{10}$		

1.3.2 Conversation of decimal number system into five number system:

Procedure: For converting decimal number into five number system, divide the decimal number by ' 5 ', writing down the reminder after each division. The reminders taken in reverse order (down to up) to form the five number system [57].

Example-1: (17) ${ }_{10}=()_{5}$

Solution:

(32) ${ }_{5}$

Example-2: (25) ${ }_{10}=()_{5}$
Solution:

5	25	
5	5	0
	1	0

$(100)_{5}$
Example-3: (5) ${ }_{10}=()_{5}$

International Journal of Innovative Research in Computer and Communication Engineering

(A High Impact Factor, Monthly, Peer Reviewed Journal)

Vol. 6, Issue 4, April 2018

Solution:

$(10){ }^{5}$

Example-4: (30) ${ }_{10}=()_{5}$

Solution:

$(110) 5$

1.4 Six Number System

Six means "six numbers". The six number system uses only "six" symbols (numbers). They are " 0 ", " 1 ", " 2 ", " 3 ", " 4 " and " 5 ". Hence, the radix (base) of the six number system is " 6 " (Table 4).

Decimal number	Six number system
0	0
1	1
2	2
3	3
4	4
5	5
6	10
7	11
8	12
9	13
10	14
11	15
12	20
13	21
14	22
15	23

International Journal of Innovative Research in Computer and Communication Engineering

(A High Impact Factor, Monthly, Peer Reviewed Journal)
Vol. 6, Issue 4, April 2018

16	24
17	25
18	30
19	31
20	32

Table 4: Six number system.
1.4.1 Conversation of six number system into decimal number system:

Procedure: If a six system number has to be converted into decimal number, then we should multiply, the positional values of each bit with the bit value and add shown in examples $1,2,3$ and 4.

Example-1: $(030)_{6}=()_{10}$

Solution:

$\mathbf{0}$	$\mathbf{3}$	$\mathbf{0}$
$6^{2}[36]$	$6^{1}[6]$	$6^{0}[1]$
0×36	3×6	0×1
0	18	0
$(18)_{10}$		

Example-2: $(100)_{6}=()_{10}$

Solution:

$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
$6^{2}[36]$	$6^{1}[6]$	$6^{0}[1]$
1×36	0×6	0×1
36	0	0
$(36)_{10}$		

Example-3: $(200)_{6}=()_{10}$

Solution:

$\mathbf{2}$	$\mathbf{0}$	$\mathbf{0}$
$6^{2}[36]$	$6^{1}[6]$	$6^{0}[1]$
2×36	0×6	0×1
72	0	0
$(72)_{10}$		

Example-4: (102) $)_{6}=()_{10}$

International Journal of Innovative Research in Computer and Communication Engineering

(A High Impact Factor, Monthly, Peer Reviewed Journal)
Vol. 6, Issue 4, April 2018

Solution:

$\mathbf{1}$	$\mathbf{0}$	$\mathbf{2}$
$6^{2}[36]$	$6^{1}[6]$	$6^{0}[1]$
1×36	0×6	2×1
36	0	2
$(38)_{10}$		

1.4.2 Conversation of decimal number system into six number system:

Procedure: For converting decimal number into six number system, divide the decimal number by ' 6 ', writing down the reminder after each division. The reminders taken in reverse order (down to up) to form the six number system [8].

Example-1: (18) ${ }_{10}=()_{6}$

Solution:

(30) 6

Example-2: (36) ${ }_{10}=()_{6}$
Solution:

(100) 6

Example-3: (72) ${ }_{10}=()_{6}$

Solution:

International Journal of Innovative Research in Computer and Communication Engineering

(A High Impact Factor, Monthly, Peer Reviewed Journal)
Vol. 6, Issue 4, April 2018
(200) 6

Example-4: (38) ${ }_{10}=()_{6}$

Solution:

(102) 6

1.5 Seven Number System

Seven means "seven numbers". The seven number system uses only "seven" symbols (numbers). They are " 0 ", " 1 ", " 2 ", " 3 ", " 4 ", " 5 " and " 6 ". Hence, the radix (base) of the seven number system is " 7 " (Table 5).

Decimal number	Seven number system
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	10
8	11
9	12
10	13
11	14
12	15
13	16
14	20
15	21
16	22
17	23
18	24
19	25
20	26

Table 5: Seven number system.

International Journal of Innovative Research in Computer and Communication Engineering

(A High Impact Factor, Monthly, Peer Reviewed Journal)

Vol. 6, Issue 4, April 2018

1.5.1 Conversation of seven number system into decimal number system:

Procedure: If a seven system number has to be converted into decimal number, then we should multiply, the positional values of each bit with the bit value and add shown in examples 1, 2, 3 and 4 .

Example-1: $(15)_{7}=()_{10}$

Solution:

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{5}$
$7^{2}[49]$	$7^{1}[7]$	$7^{0}[1]$
0×49	1×7	5×1
0	7	5
$(12)_{10}$		

Example-2: $(23)_{7}=()_{10}$

Solution:

$\mathbf{0}$	$\mathbf{2}$	$\mathbf{3}$
$7^{2}[49]$	$7^{1}[7]$	$7^{0}[1]$
0×49	2×7	3×1
0	14	3
$(17)_{10}$		

Example-3: (26)7 = () 10

Solution:

$\mathbf{0}$	$\mathbf{2}$	$\mathbf{6}$
$7^{2}[49]$	$7^{1}[7]$	$7^{0}[1]$
0×49	2×7	6×1
0	14	6
$(20)_{10}$		

Example-4: $(102)_{7}=()_{10}$

Solution:

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{0}$
$7^{2}[49]$	$7^{1}[7]$	$7^{0}[1]$
1×49	2×7	0×1
49	14	0
$(63)_{10}$		

1.5.2 Conversation of decimal number system into seven number system:

Procedure: For converting decimal number into seven number system [9], divide the decimal number by ' 7 ', writing down the reminder after each division. The reminders taken in reverse order (down to up) to form the seven number system.

International Journal of Innovative Research in Computer and Communication Engineering

(A High Impact Factor, Monthly, Peer Reviewed Journal)
Vol. 6, Issue 4, April 2018

Example-1: (12) ${ }_{10}=()_{7}$

Solution:

$(15)_{7}$

Example-2: (17) ${ }_{10}=()_{7}$

Solution:

$(23)_{7}$

Example-3: (20) ${ }_{10}=()_{7}$
Solution:

$(26)_{7}$

Example-4: (63) ${ }_{10}=()_{7}$
Solution:

$(120)_{7}$

International Journal of Innovative Research in Computer and Communication Engineering

(A High Impact Factor, Monthly, Peer Reviewed Journal)

Vol. 6, Issue 4, April 2018

Nine means "nine numbers". The nine number system uses only "nine" symbols (numbers) [10]. They are " 0 ", " 1 ", $" 2 ", " 3 ", " 4 ", " 5 ", " 6 ", " 7 "$ and " 8 ". Hence, the radix (base) of the nine number system is " 9 " (Table 6).

Decimal number	Eight number system
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	10
8	11
9	12
10	13
11	14
12	15
13	16
14	20
15	21
16	22
17	23
18	24
19	25
20	26

Table 6: Nine number system.
1.6.1 Conversation of nine number system into decimal number system:

Procedure: If a nine system number has to be converted into decimal number, then we should multiply, the positional values of each bit with the bit value and add shown in examples 1, 2, 3 and 4.

Example-1: $(10)_{9}=()_{10}$

Solution:

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
$9^{2}[81]$	$9^{1}[9]$	$9^{0}[1]$
1×81	1×9	0×1
0	9	0
$(9)_{10}$		

Example-2: $(15)_{9}=()_{10}$

International Journal of Innovative Research in Computer and Communication Engineering

(A High Impact Factor, Monthly, Peer Reviewed Journal)
Vol. 6, Issue 4, April 2018

Solution:

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{5}$
$9^{2}[81]$	$9^{1}[9]$	$9^{0}[1]$
0×81	1×9	5×1
0	9	5
$(14)_{10}$		

Example-3: $(20)_{9}=()_{10}$

Solution:

$\mathbf{0}$	$\mathbf{2}$	$\mathbf{0}$
$9^{2}[81]$	$9^{1}[9]$	$9^{0}[1]$
0×81	2×9	0×1
0	18	0
$(18)_{10}$		

Example-4: $(22)_{9}=()_{10}$

Solution:

$\mathbf{0}$	$\mathbf{2}$	$\mathbf{2}$
$9^{2}[81]$	$9^{1}[9]$	$9^{0}[1]$
0×81	2×9	2×1
0	18	2
$(20)_{10}$		

1.6.2 Conversation of decimal number system into nine number system:

Procedure: For converting decimal number into nine number system, divide the decimal number by ' 9 ', writing down the reminder after each division. The reminders taken in reverse order (down to up) to form the nine number system [11].

Example-1: (9) ${ }_{10}=()_{9}$

Solution:

(10) ${ }_{9}$

Example-2: (14) ${ }_{10}=()_{9}$

International Journal of Innovative Research in Computer and Communication Engineering

(A High Impact Factor, Monthly, Peer Reviewed Journal)
Vol. 6, Issue 4, April 2018

Solution:

(15)9

1.7 32-bit Number System

32 mean " 32 numbers". The 32 number system uses " 32 " symbol (numbers). They are numbers "from 0 to 9 " and alphabets "from A to V". Hence, the radix (base) of the 32 number system is " 32 " (Table 7).

Decimal number	32 number system	Binary values
0	0	0
1	1	1
2	2	10
3	3	11
4	4	100
5	5	101
6	6	110
7	7	111
8	8	1000
9	A	1001
10	B	1010
11	C	1011
12	E	1100
13	F	1101
14	G	1110
15	H	1111
16	I	10000
17	J	10001
18	K	10010
19	L	10011
20	M	10100
21	10110	
22		

Table 7: 32 number system.

International Journal of Innovative Research in Computer and Communication Engineering

(A High Impact Factor, Monthly, Peer Reviewed Journal)

Vol. 6, Issue 4, April 2018

1.7.1 Conversation of $\mathbf{3 2}$ number system into decimal number system:

Procedure: If a 32 system number has to be converted into decimal number, then we should multiply, the positional values of each bit with the bit value and add shown in examples $1,2,3$ and 4.

Example-1: $(\mathrm{A})_{32}=()_{10}$

Solution:

$\mathbf{0}$	$\mathbf{0}$	\mathbf{A}
$32^{2}[81]$	$32^{1}[9]$	$32^{0}[1]$
0×1024	0×32	10×1
0	0	10
$(10)_{10}$		

Example-2: (A2) ${ }_{32}=()_{10}$

Solution:

$\mathbf{0}$	\mathbf{A}	$\mathbf{2}$
$32^{2}[1024]$	$32^{1}[32]$	$32^{0}[1]$
0×1024	10×32	2×1
0	320	2
$(322)_{10}$		

Example-3: $(5 \mathrm{~A})_{32}=()_{10}$

Solution:

$\mathbf{0}$	$\mathbf{5}$	\mathbf{A}
$32^{2}[1024]$	$32^{1}[32]$	$32^{0}[1]$
0×1024	5×32	10×1
0	160	10
$(170)_{10}$		

Example-4: $(1 \mathrm{EA})_{32}=()_{10}$

Solution:

$\mathbf{1}$	\mathbf{E}	\mathbf{A}
$32^{2}[1024]$	$32^{1}[32]$	$32^{0}[1]$
1×1024	14×32	10×1
1024	448	10
$(1482)_{10}$		

Example-5: (VVV) ${ }_{32}=()_{10}$

International Journal of Innovative Research in Computer and Communication Engineering

(A High Impact Factor, Monthly, Peer Reviewed Journal)
Vol. 6, Issue 4, April 2018

Solution:

$\mathbf{3 1}$	$\mathbf{3 1}$	$\mathbf{3 1}$
$32^{2}[1024]$	$32^{1}[32]$	$32^{0}[1]$
1×1024	14×32	31×1
1024	448	31
31744	992	31
$(32767) 10$		

1.7.2 Conversation of decimal number system into four number system:

Procedure: For converting decimal number into 32 number system, divide the decimal number by ' 32 ', writing down the reminder after each division. The reminders taken in reverse order (down to up) to form the 32 number system [12].

Example-1: (322) ${ }_{10}=()_{32}$

Solution:

(A2) 32
Example-2: $(32)_{10}=()_{32}$

Solution:

32	10	
	0	10

(A) 32

Example-3: (32767) ${ }_{10}=()_{32}$
Solution:

International Journal of Innovative Research in Computer and Communication Engineering

(A High Impact Factor, Monthly, Peer Reviewed Journal)
Vol. 6, Issue 4, April 2018

32	32767	
32	1023	31
	31	31

(VVV) ${ }_{4}$

II. CONCLUSION

The " 32 -bit number system" or simply " 32 " numbering system uses the Base of 32 system and are a popular choice for representing long binary values because their format is quite compact and much easier to understand compared to the long binary strings of 1 's and 0's.
Being a Base-32 system, the 32-bit numbering system therefore uses 32 (thirty-two) different digits with a combination of numbers from 0 through to $31(\mathrm{~V})$. In other words, there are 32 possible digit symbols.
In the everyday use of the decimal numbering system we use groups of three digits or 000 's from the right hand side to make a very large number such as a million or trillion, easier for us to understand and the same is also true in digital systems.
However, there is a potential problem with using this method of digit notation caused by the fact that the decimal numerals of 10 to 31 are normally written using two adjacent symbols. For example, if we write 10 in 32 number system, do we mean the decimal number ten, or the binary number of two $(1+0)$. To get around this tricky problem 32-bit system numbers that identify the values of ten, eleven,..., fifteen are replaced with capital letters of A to V respectively.
Also, since 32 in the decimal system is the fourth power of 2 (or 25), there is a direct relationship between the numbers 2 and 32 so one 32 number system digit has a value equal to five binary digits so now V is equal to " 31 ".

III. REFERENCES

1. K Anand, Switching theory and logic design. 2008.
2. M morris, Switching theory and logic design. 2008.
3. K Zvi, Switching and Finite Automata Theory Cambridge University 2009.
4. T Herbert, S Donald, Digital Integrated Electronics. McGraw-Hill electrical and electronic engineering series 1977.
5. M De Giovanni, Synthesis and Optimization of Digital Circuits. 1994.
6. KH Randy, B Gaetano, Contemporary Logic Design.
7. L Ai-Qun, RF Mems Switches and Integrated Switching Circuits. 2010.
8. Y Fei, Computer Methods for Analysis of Mixed-Mode Switching Circuits. Journal of Semiconductor Technology and Science 2004.
9. CH Roth, LL Kinney, Fundamentals of Logic Design $7^{\text {th }}$ Edition.
10. C Rao, Switching Theory and Logic Design $1^{\text {st }}$ Edition.
11. D Sudha Mohan, Digital Electronics and Micro Controllers.
12. DJV Suresh babu, Digital Electronics.
