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Abstract: Cloud computing provides people a way to share large mount of distributed resources belonging to different organizations. That is a 
good way to share many kinds of distributed resources, but it also makes security problems more complicate and more important for users than 
before. Cloud cartography could be used by an attacker who wanted to place his own VM next to a target's VM and exploit vulnerabilities. To 
create the map, the attacker would deploy a large number of VMs in the service provider's cloud. He could then use the information he gets back 
from the service provider about his deployments to get a sense of how the provider assigns IP addresses for different instance types and 
accounts. 
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INTRODUCTION 

Seven of the specific security issues Gartner says customers 
should raise with vendors before selecting a cloud vendor. 
Privileged user access: Sensitive data processed outside the 
enterprise brings with it an inherent level of risk, because 
outsourced services bypass the "physical, logical and 
personnel controls" IT shops exert over in-house programs. 
Get as much information as you can about the people who 
manage your data. "Ask providers to supply specific 
information on the hiring and oversight of  privileged 
administrators, and the controls over their access," Gartner 
says. 
 
Regulatory compliance: Customers are ultimately 
responsible for the security and integrity of their own data, 
even when it is held by a service provider. Traditional 
service providers are subjected to external audits and 
security certifications. Cloud computing providers who 
refuse to undergo this scrutiny are "signaling that customers 
can only use them for the most trivial functions," according 
to Gartner. 
 
Data location: When you use the cloud, you probably won't 
know exactly where your data is hosted. In fact, you might 
not even know what country it will be stored in. Ask 
providers if they will commit to storing and processing data 
in specific jurisdictions, and whether they will make a 
contractual commitment to obey local privacy requirements 
on behalf of their customers, Gartner advises. 
 
Data segregation: Data in the cloud is typically in a shared 
environment alongside data from other customers. 
Encryption is effective but isn't a cure-all. "Find out what is 
done to segregate data at rest," Gartner advises. The cloud 
provider should provide evidence that encryption schemes 
were designed and tested by experienced specialists. 
"Encryption accidents can make data totally unusable, and 
even normal encryption can complicate availability," 
Gartner says. 
 

 
Recovery: Even if you don't know where your data is, a 
cloud provider should tell you what will happen to your data 
and service in case of a disaster. "Any offering that does not 
replicate the data and application infrastructure across 
multiple sites is vulnerable to a total failure," Gartner says. 
Ask your provider if it has "the ability to do a complete 
restoration, and how long it will take." 
 
Investigative support: Investigating inappropriate or illegal 
activity may be impossible in cloud computing, Gartner 
warns. "Cloud services are especially difficult to investigate, 
because logging and data for multiple customers may be co-
located and may also be spread across an ever-changing set 
of hosts and data centers. If you cannot get a contractual 
commitment to support specific forms of investigation, 
along with evidence that the vendor has already successfully 
supported such activities, then your only safe assumption is 
that investigation and discovery requests will be 
impossible." 
 
Long-term viability: Ideally, your cloud computing provider 
will never go broke or get acquired and swallowed up by a 
larger company. But you must be sure your data will remain 
available even after such an event. "Ask potential providers 
how you would get your data back and if it would be in a 
format that you could import into a replacement 
application," Gartner says. 

THE EC2 SERVICE 

By far the best known example of a third-party compute 
cloud is Amazon’s Elastic Compute Cloud (EC2) service, 
which enables users to flexibly rent computational resources 
for use by their applications [5]. EC2 provides the ability to 
run Linux, FreeBSD, Open Solaris and Windows as guest 
operating systems within a virtual machine (VM) provided 
by a version of the Xen hypervisor [9].1 The hypervisor 
plays the role of a virtual machine monitor and provides 
isolation between VMs, intermediating access to physical 
memory and devices. A privileged virtual machine, called 
Domain0 (Dom0) in the Xen vernacular, is used to manage 
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guest images, their physical resource provisioning, and any 
access control rights. In EC2 the Dom0 VM is configured to 
route packets for its guest images and reports itself as a hop 
in trace routes.  
 
When first registering with EC2, each user creates an 
account—uniquely specified by its contact e-mail address 
and provides credit card information for billing compute and 
I/O charges. With a valid account, a user creates one or 
more VM images, based on a supplied Xen-compatible 
kernel, but with an otherwise arbitrary configuration. He can 
run one or more copies of these images on Amazon’s 
network of machines. One such running image is called an 
instance, and when the instance is launched, it is assigned to 
a single physical machine within the EC2 network for its 
lifetime; EC2 does not appear to currently support live 
migration of instances, although this should be technically 
feasible. By default, each user account is limited to 20 
concurrently running instances. 
 
In addition, there are three degrees of freedom in specifying 
the physical infrastructure upon which instances should run. 
At the time of this writing, Amazon provides two “regions”, 
one located in the United States and the more recently 
established one in Europe. Each region contains three 
“availability zones” which are meant to specify 
infrastructures with distinct and independent failure modes. 
 
(e.g., with separate power and network connectivity). When 
requesting launch of an instance, a user specifies the region 
and may choose a specific availability zone (otherwise one 
is assigned on the user’s behalf). As well, the user can 
specify an “instance type”, indicating a particular 
combination of computational power, memory and 
persistent storage space available to the virtual machine. 
There are five Linux instance types documented at present, 
referred to as ‘m1.small’, ‘c1.medium’, ‘m1.large’, 
‘m1.xlarge’, and ‘c1.xlarge’. The first two are 32-bit 
architectures, the latter three are 64-bit. To give some sense 
of relative scale, the “small compute slot” (m1.small) is 
described as a single virtual core providing one ECU (EC2 
Compute Unit, claimed to be equivalent to a 1.0–1.2 GHz 
2007 Opteron or 2007 Xeon processor) combined with 1.7 
GB of memory and 160 GB of local storage, while the 
“large compute slot” (m1.large) provides 2 virtual cores 
each with 2 ECUs, 7.5GB of memory and 850GB of local 
storage. As expected, instances with more resources incur 
greater hourly charges (e.g., ‘m1.small’ in the United States 
region is currently $0.10 per hour, while ‘m1.large’ is 
currently $0.40 per hour). When launching an instance, the 
user specifies the instance type along with a compatible 
virtual machine image.  
 
Given these constraints, virtual machines are placed on 
available physical servers shared among multiple instances. 
Each instance is given Internet connectivity via both an 
external IPv4 address and domain name and an internal RFC 
1918 private address and domain name. For example, an 
instance might be assigned external IP 75.101.210.100, 
external name ec2-75-101-210 100. compute1. 
amazonaws.com, internal IP 10.252.146.52, and internal 
name domU-12-31-38-00-8D-C6.compute-internal. Within 
the cloud, both domain names resolve to the internal IP 

address; outside the cloud the external name is mapped to 
the external IP address.  

NETWORK PROBING 

Network probing is used, both to identify public services 
hosted on EC2 and to provide evidence of co-residence (that 
two instances share the same physical server). In particular, 
we utilize nmap, hoping, and get to perform network probes 
to determine liveness of EC2 instances. We use nmap to 
perform TCP connect probes, which attempt to complete a 
3-way hand-shake between a source and target. We use 
hoping to perform TCPSYN trace routes, which iteratively 
sends TCP SYN packets with increasing time-to-lives 
(TTLs) until no ACK is received. Both TCP connect probes 
and SYN trace routes require a target port; we only targeted 
ports 80 or 443. We used wget to retrieve web pages, but 
capped so that at most 1024 bytes are retrieved from any 
individual web server.  
 
We distinguish between two types of probes: external 
probes and internal probes. A probe is external when it 
originates from a system outside EC2 and has destination an 
EC2 instance. A probe is internal if it originates from an 
EC2 instance (under our control) and has destination another 
EC2 instance. This dichotomy is of relevance particularly 
because internal probing is subject to Amazon’s acceptable 
use policy, whereas external probing is not.  
 
We use DNS resolution queries to determine the external 
name of an instance and also to determine the internal IP 
address of an instance associated with some public IP 
address. The latter queries are always performed from an 
EC2 instance. 

CLOUD CARTOGRAPHY 

In this section we ‘map’ the EC2 service to understand 
where potential targets are located in the cloud and the 
instance creation parameters needed to attempt establishing 
co-residence of an adversarial instance. This will speed up 
significantly adversarial strategies for placing a malicious 
VM on the same machine as a target 
 
To map EC2, we begin with the hypothesis that different 
availability zones are likely to correspond to different 
internal IP address ranges and the same may be true for 
instance types as well. Thus, mapping the use of the EC2 
internal address space allows an adversary to determine 
which IP addresses correspond to which creation 
parameters. Moreover, since EC2’s DNS service provides a 
means to map public IP address to private IP address, an 
adversary might use such a map to infer the instance type 
and availability zone of a target service—thereby 
dramatically reducing the number of instances needed 
before a co-resident placement is achieved. 
 
We evaluate this theory using two data sets: one created by 
enumerating public EC2-based web servers using external 
probes and translating responsive public IPs to internal IPs 
(via DNS queries within the cloud), and another created by 
launching a number of EC2 instances of varying types and 
surveying the resulting IP address assigned. To fully 
leverage the latter data, we present a heuristic algorithm that 
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helps label /24 prefixes with an estimate of the availability 
zone and instance type of the included Internal IPs. These 
heuristics utilize several beneficial features of EC2’s 
addressing regime. The output of this process is a map of the 
internal EC2 address space which allows one to estimate the 
availability zone and instance type of any target public EC2 
server. Next, we enumerate a set of public EC2-based Web 
servers 
a. All IPs from a /16 are from the same     

availability zone. 
b. A /24 inherits any included sampled    

instance type.  
c. A /24 containing a Dom0 IP address only  

contains Dom0 IP addresses. We associate  
 to this /24 the type of the Dom0’s  associated instance. 

d. All /24’s between two consecutive Dom0 /24’s inherit 
the former’s associated type.  

 
The last heuristic, which enables us to label /24’s that have 
no included instance, is derived from the observation that 
Dom0 IPs are consistently assigned a prefix that 
immediately precedes the instance IPs they are associated 
with. There were 869 /24’s in the data, and applying the 
heuristics resulted in assigning a unique zone and unique 
type to 723 of these; a unique zone and two types to 23 of 
these; and left 123 unlabeled. These last were due to areas 
(such as the lower portion of 10.253.0.0/16) for which we 
had no sampling data at all. 
 
While the map might contain errors (for example, in areas of 
low instance sample numbers), we have yet to encounter an 
instance that contradicts the /24 labeling and we used the 
map for many of the future experiments. For instance, we 
applied it to a subset of the public servers derived from our 
survey, those that responded to wget requests with an HTTP 
200 or 206. The resulting 6 057 servers were used as stand-
ins for targets in some of the experiments in Section 7. 
 
Preventing cloud cartography: Providers likely have 
incentive to prevent cloud cartography for several reasons, 
beyond the use we outline here (that of exploiting placement 
vulnerabilities). Namely, they might wish to hide their 
infrastructure and the amount of use it is enjoying by 
customers. Several features of EC2 made cartography 
significantly easier. Paramount is that local IP addresses are 
statically (at least over the observed period of time) 
associated to availability zone and instance type. Changing 
this would likely make administration tasks more 
challenging (and costly) for providers. Also, using the map 
requires translating a victim instance’s external IP to an 
internal IP, and the provider might inhibit this by isolating 
each account’s view of the internal IP address space (e.g. via 
VLANs and bridging). Even so, this would only appear to 
slow down our particular technique for locating an instance 
in the LAN—one might instead use ping timing 
measurements or trace routes (both discuss more in the next 
section) to help “triangulate” on a victim. 

DETERMINING CO-RESIDENCE 

Given a set of targets, the EC2 map from the previous 
section educates choice of instance launch parameters for 
attempting to achieve placement on the same physical 
machine. Recall that we refer to instances that are running 

on the same physical machine as being co-resident. In this 
section we describe several easy-to-implement co-residence 
checks. Looking ahead, our eventual check of choice will be 
to compare instances’ Dom0 IP addresses. We confirm the 
accuracy of this (and other) co-residence checks by 
exploiting a hard-disk-based covert channel between EC2 
instances. 
 
Network-based co-residence checks: Using our experience 
running instances while mapping EC2 and inspecting data 
collected about them, we identify several potential methods 
for checking if two instances are co-resident. 
Namely, instances are likely co-resident if they have 
a. matching Dom0 IP address, 
b. small packet round-trip times, or 
c. numerically close internal IP addresses (e.g. within 7). 

 
As mentioned, an instance’s network traffic’s first hop is the 
Dom0 privileged VM. An instance owner can determine its 
Dom0 IP from the first hop on any route out from the 
instance. One can determine an uncontrolled instance’s 
Dom0 IP by performing a TCP SYN trace route to it (on 
some open port) from another instance and inspecting the 
last hop. For the second test, we noticed that round-trip 
times (RTTs) required a “warm-up”: the first reported RTT 
in any sequence of probes was almost always an order of 
magnitude slower than subsequent probes. Thus for this 
method we perform 10 probes and just discard the first. The 
third check makes use of the manner in which internal IP 
addresses appear to be assigned by EC2. The same Dom0 IP 
will be shared by instances with a contiguous sequence of 
internal IP addresses. 
 
Veracity of the co-residence checks. We verify the 
correctness of our network-based co-residence checks using 
as ground truth the ability to send messages over a cross-
VM covert channel. That is, if two instances (under our 
control) can successfully transmit via the covert channel 
then they are co-resident, otherwise not. If the checks above 
(which do not require both instances to be under our control) 
have sufficiently low false positive rates relative to this 
check, then we can use them for inferring co-residence 
against arbitrary victims. We utilized for this experiment a 
hard-disk-based covert channel. At a very high level, the 
channel works as follows.  
 
To send a one bit, the sender instance reads from random 
locations on a shared disk volume. To send a zero bit, the 
sender does nothing. The receiver times reading from a 
fixed location on the disk volume. Longer read times mean a 
1 is being set, shorter read times give a 0. 
 
We performed the following experiment.  
Three EC2 accounts were utilized: a control, a victim, and a 
probe. (The “victim” and “probe” are arbitrary labels, since 
they were both under our control.) All instances launched 
were of type m1.small.  
 
Two instances were launched by the control account in each 
of the three availability zones. Then 20 instances on the 
victim account and 20 instances on the probe account were 
launched, all in Zone 3.  
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We determined the Dom0 IPs of each instance. For each 
(ordered) pair (A,B) of these 40 instances, if the Dom0 IPs 
passed (check 1) then we had A probe B and each control to 
determine packet RTTs and we also sent a 5-bit message 
from A to B over the hard-drive covert channel. 

EXPLOITING PLACEMENT IN EC2 

Consider an adversary wishing to attack one or more EC2 
instances. Can the attacker arrange for an instance to be 
placed on the same physical machine as (one of) these 
victims? In this section we assess the feasibility of achieving 
co-residence with such target victims, saying the attacker is 
successful if he or she achieves good coverage (co-residence 
with a notable fraction of the target set).  
 
The brute-force strategy has an attacker simply launch many 
instances over a relatively long period of time. Such a naive 
strategy already achieves reasonable success rates (though 
for relatively large target sets). A more refined strategy has 
the attacker target recently-launched instances. This takes 
advantage of the tendency for EC2 to assign fresh instances 
to the same small set of machines. 

Brute-forcing placement: 
We start by assessing an obvious attack strategy: run 
numerous instances over a (relatively) long period of time 
and see how many targets one can achieve co-residence 
with. While such a brute-force strategy does nothing clever 
(once the results of the previous sections are in place), our 
hypothesis is that for large target sets this strategy will 
already allow reasonable success rates. 

 
The strategy works as follows. The attacker enumerates a set 
of potential target victims. The adversary then infers which 
of these targets belong to a particular availability zone and 
are of a particular instance type using the map Then, over 
some (relatively long) period of time the adversary 
repeatedly runs probe instances in the target zone and of the 
target type. Each probe instance checks if it is co-resident 
with any of the targets. If not the instance is quickly 
terminated. 
 
We experimentally gauged this strategy’s potential efficacy. 
We utilized as “victims” the subset of public EC2- based 
web servers surveyed in Section 5 that responded with 
HTTP 200 or 206 to a wget request on port 80.  
 
The gap in time between our survey of the public EC2 
servers and the launching of probes means that new web 
servers or ones that changed IPs were not detected, even 
when we in fact achieved co-residence with them.  
 
Our results suggest that even a very naive attack strategy 
can successfully achieve co-residence against a not-so-small 
fraction of targets. Of course, we considered here a large 
target set, and so we did not provide evidence of efficacy 
against an individual instance or a small sets of targets. We 
observed very strong sequential locality in the data, which 
hinders the effectiveness of the attack. In particular, the 
growth in target set coverage as a function of number of 
launched probes levels off quickly. This suggests that fuller 
coverage of the target set could require many more probes. 

Abusing Placement Locality: 
We would like to find attack strategies that do better than 
brute-force for individual targets or small target sets. Here 
we discuss an alternate adversarial strategy. We assume that 
an attacker can launch instances relatively soon after the 
launch of a target victim. The attacker then engages in 
instance flooding: running as many instances in parallel as 
possible (or as many as he or she is willing to pay for) in the 
appropriate availability zone and of the appropriate type. 
While an individual account is limited to 20 instances, it is 
trivial to gain access to more accounts. As we show, running 
probe instances temporally near the launch of a victim 
allows the attacker to effectively take advantage of the 
parallel placement locality exhibited by the EC2 placement 
algorithms. 
 
But why would we expect that an attacker can launch 
instances soon after a particular target victim is launched? 
Here the dynamic nature of cloud computing plays well into 
the hands of creative adversaries. Recall that one of the main 
features of cloud computing is to only run servers when 
needed. This suggests that servers are often run on instances, 
terminated when not needed, and later run again. 
 
So for example, an attacker can monitor a server’s state 
(e.g., via network probing), wait until the instance 
disappears, and then if it reappears as a new instance, 
engage in instance flooding. Even more interestingly, an 
attacker might be able to actively trigger new victim 
instances due to the use of auto scaling systems. These 
automatically grow the number of instances used by a 
service to meet increases in demand.  

Patching placement vulnerabilities: 
The EC2 placement algorithms allow attackers to use 
relatively simple strategies to achieve co-residence with 
victims (that are not on fully-allocated machines). As 
discussed earlier, inhibiting cartography or co-residence 
checking (which would make exploiting placement more 
difficult) would seem insufficient to stop a dedicated 
attacker. On the other hand, there is a straightforward way to 
“patch” all placement vulnerabilities: offload choice to 
users. Namely, let users request placement of their VMs on 
machines that can only be populated by VMs from their (or 
other trusted) accounts. 
 
In exchange, the users can pay the opportunity cost of 
leaving some of these machines under-utilized. In an 
optimal assignment policy (for any particular instance type), 
this additional overhead should never need to exceed the 
cost of a single physical machine. 

CROSS-VM INFORMATION LEAKAGE 

The previous sections have established that an attacker can 
often place his or her instance on the same physical machine 
as a target instance. In this section, we show the ability of a 
malicious instance to utilize side channels to learn 
information about co-resident instances. Namely we show 
that (time-shared) caches allow an attacker to measure when 
other instances are experiencing computational load. 
 
Leaking such information might seem innocuous, but in fact 
it can already be quite useful to clever attackers. We 
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introduce several novel applications of this side channel: 
robust co-residence detection (agnostic to network 
configuration), surreptitious detection of the rate of web 
traffic a co-resident site receives, and even timing 
keystrokes by an honest user (via SSH) of a co-resident 
instance. For the keystroke timing attack, we performed 
experiments on an EC2-like virtualized environment. 
 
On stealing cryptographic keys. There has been a long  line 
of work on extracting cryptographic secrets via cache-based 
side channels. Such attacks, in the context of third-party 
compute clouds, would be incredibly damaging—and since 
the same hardware channels exist, are fundamentally just as 
feasible. In practice, cryptographic cross-VM attacks turn 
out to be somewhat more difficult to realize due to factors 
such as core migration, coarser scheduling algorithms, 
double indirection of memory addresses, and unknown load 
from other instances and a fortuitous choice of CPU 
configuration  
 
The side channel attacks we report on in the rest of this 
section are more coarse-grained than those required to 
extract cryptographic keys. While this means the attacks 
extract less bits of information, it also means they are more 
robust and potentially simpler to implement in noisy 
environments such as EC2. Other channels; denial of 
service. Not just the data cache but any physical machine 
resources multiplexed between the attacker and target forms 
a potentially useful channel: network access, CPU branch 
predictors and instruction cache  

The Hadoop Approach: 
Hadoop is designed to efficiently process large volumes of 
information by connecting many commodity computers 
together to work in parallel. The theoretical 1000-CPU 
machine described earlier would cost a very large amount of 
money, far more than 1,000 single-CPU or 250 quad-core 
machines. Hadoop will tie these smaller and more 
reasonably priced machines together into a single cost-
effective compute cluster. 

Comparison to Existing Techniques: 
Performing computation on large volumes of data has been 
done before, usually in a distributed setting. What makes 
Hadoop unique is its simplified programming model 
which allows the user to quickly write and test distributed 
systems, and its efficient, automatic distribution of data 
and work across machines and in turn utilizing the 
underlying parallelism of the CPU cores. 
 
Grid scheduling of computers can be done with existing 
systems such as Condor. But Condor does not automatically 
distribute data: a separate SAN must be managed in addition 
to the compute cluster. Furthermore, collaboration between 
multiple compute nodes must be managed with a 
communication system such as MPI. This programming 
model is challenging to work with and can lead to the 
introduction of subtle errors. 

Data Distribution: 
In a Hadoop cluster, data is distributed to all the nodes of the 
cluster as it is being loaded in. The Hadoop Distributed File 
System (HDFS) will split large data files into chunks which 
are managed by different nodes in the cluster. In addition to 

this each chunk is replicated across several machines, so that 
a single machine failure does not result in any data being 
unavailable. An active monitoring system then re-replicates 
the data in response to system failures which can result in 
partial storage. Even though the file chunks are replicated 
and distributed across several machines, they form a single 
namespace, so their contents are universally accessible. 
 
Data is conceptually record-oriented in the Hadoop 
programming framework. Individual input files are broken 
into lines or into other formats specific to the application 
logic. Each process running on a node in the cluster then 
processes a subset of these records. The Hadoop framework 
then schedules these processes in proximity to the location 
of data/records using knowledge from the distributed file 
system. Since files are spread across the distributed file 
system as chunks, each compute process running on a node 
operates on a subset of the data. Which data operated on by 
a node is chosen based on its locality to the node: most data 
is read from the local disk straight into the CPU, alleviating 
strain on network bandwidth and preventing unnecessary 
network transfers. This strategy of moving computation to 
the data, instead of moving the data to the computation 
allows Hadoop to achieve high data locality which in turn 
results in high performance.  

Map Reduce: Isolated Processes: 
Hadoop limits the amount of communication which can be 
performed by the processes, as each individual record is 
processed by a task in isolation from one another. While this 
sounds like a major limitation at first, it makes the whole 
framework much more reliable. Hadoop will not run just 
any program and distribute it across a cluster. Programs 
must be written to conform to a particular programming 
model, named "MapReduce." 
 
In Map Reduce, records are processed in isolation by tasks 
called Mappers. The output from the Mappers is then 
brought together into a second set of tasks called Reducers, 
where results from different mappers can be merged 
together. 
 

 
Figure 1 

Distributed File System Basics: 
A distributed file system is designed to hold a large amount 
of data and provide access to this data to many clients 
distributed across a network. There are a number of 
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distributed file systems that solve this problem in different 
ways. 
NFS, the Network File System, is the most ubiquitous 
distributed file system. It is one of the oldest still in use. 
While its design is straightforward, it is also very 
constrained. NFS provides remote access to a single logical 
volume stored on a single machine. An NFS server makes a 
portion of its local file system visible to external clients. The 
clients can then mount this remote file system directly into 
their own Linux file system, and interact with it as though it 
were part of the local drive. 
 
One of the primary advantages of this model is its 
transparency. Clients do not need to be particularly aware 
that they are working on files stored remotely. The existing 
standard library methods like open(), close(), fread(), etc. 
will work on files hosted over NFS. 
 
But as a distributed file system, it is limited in its power. 
The files in an NFS volume all reside on a single machine. 
This means that it will only store as much information as 
can be stored in one machine, and does not provide any 
reliability guarantees if that machine goes down (e.g., by 
replicating the files to other servers). Finally, as all the data 
is stored on a single machine, all the clients must go to this 
machine to retrieve their data. This can overload the server 
if a large number of clients must be handled. Clients must 
also always copy the data to their local machines before they 
can operate on it. 
 
HDFS is designed to be robust to a number of the problems 
that other DFS's such as NFS are vulnerable to. In 
particular: 

a. HDFS is designed to store a very large amount of 
information (terabytes or petabytes). This requires 
spreading the data across a large number of 
machines. It also supports much larger file sizes 
than NFS. 

b. HDFS should store data reliably. If individual 
machines in the cluster malfunction, data should 
still be available. 

c. HDFS should provide fast, scalable access to this 
information. It should be possible to serve a larger 
number of clients by simply adding more machines 
to the cluster. 

d. HDFS should integrate well with Hadoop Map 
Reduce, allowing data to be read and computed 
upon locally when possible. 

 
But while HDFS is very scalable, its high performance 
design also restricts it to a particular class of applications; it 
is not as general-purpose as NFS. There are a large number 
of additional decisions and trade-offs that were made with 
HDFS. In particular: 

a. Applications that use HDFS are assumed to 
perform long sequential streaming reads from files. 
HDFS is optimized to provide streaming read 
performance; this comes at the expense of random 
seek times to arbitrary positions in files. 

b. Data will be written to the HDFS once and then 
read several times; updates to files after they have 
already been closed are not supported. (An 
extension to Hadoop will provide support for 

appending new data to the ends of files; it is 
scheduled to be included in Hadoop 0.19 but is not 
available yet.) 

c. Due to the large size of files, and the sequential 
nature of reads, the system does not provide a 
mechanism for local caching of data. The overhead 
of caching is great enough that data should simply 
be re-read from HDFS source. 

d. Individual machines are assumed to fail on a 
frequent basis, both permanently and intermittently. 
The cluster must be able to withstand the complete 
failure of several machines, possibly many 
happening at the same time (e.g., if a rack fails all 
together). While performance may degrade 
proportional to the number of machines lost, the 
system as a whole should not become overly slow, 
nor should information be lost. Data replication 
strategies combat this problem. 

 
The design of HDFS is based on the design of GFS, the 
Google File System. Its design was described in a paper 
published by Google.  
 
HDFS is a block-structured file system: individual files are 
broken into blocks of a fixed size. These blocks are stored 
across a cluster of one or more machines with data storage 
capacity. Individual machines in the cluster are referred to 
as Data Nodes. A file can be made of several blocks, and 
they are not necessarily stored on the same machine; the 
target machines which hold each block are chosen randomly 
on a block-by-block basis. Thus access to a file may require 
the cooperation of multiple machines, but supports file sizes 
far larger than a single-machine DFS; individual files can 
require more space than a single hard drive could hold. 

Starting HDFS: 
Now we must format the file system that we just configured: 
user@namenode:hadoop$ bin/hadoop namenode -format 
This process should only be performed once. When it is 
complete, we are free to start the distributed file system: 
user@namenode:hadoop$ bin/start-dfs.sh 
 
This command will start the NameNode server on the master 
machine (which is where the start-dfs.sh script was 
invoked). It will also start the DataNode instances on each 
of the slave machines. In a single-machine "cluster," this is 
the same machine as the NameNode instance. On a real 
cluster of two or more machines, this script will ssh into 
each slave machine and start a DataNode instance. 

Interacting With HDFS: 
This section will familiarize you with the commands 
necessary to interact with HDFS, loading and retrieving 
data, as well as manipulating files. This section makes 
extensive use of the command-line.  
 
The bulk of commands that communicate with the cluster 
are performed by a monolithic script named bin/hadoop. 
This will load the Hadoop system with the Java virtual 
machine and execute a user command. The commands are 
specified in the following form: 
user@machine:hadoop$ bin/hadoop moduleName -cmd 
args... 
 

http://developer.yahoo.com/hadoop/tutorial/module2.html#ref_gfs�
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The moduleName tells the program which subset of Hadoop 
functionality to use. -cmd is the name of a specific command 
within this module to execute. Its arguments follow the 
command name. 
 
Two such modules are relevant to HDFS: dfs and dfsadmin. 
Their use is described in the sections below. 

Shutting Down HDFS: 
If you want to shut down the HDFS functionality of your 
cluster (either because you do not want Hadoop occupying 
memory resources when it is not in use, or because you want 
to restart the cluster for upgrading, configuration changes, 
etc.), then this can be accomplished by logging in to the 
NameNode machine and running: 
someone@namenode:hadoop$ bin/stop-dfs.sh 
This command must be performed by the same user who 
started HDFS with bin/start-dfs.sh. 

USING HDFS IN MAPREDUCE 

The HDFS is a powerful companion to Hadoop Map 
Reduce. By setting the fs.default.name configuration option 
to point to the Name Node (as was done above), Hadoop 
Map Reduce jobs will automatically draw their input files 
from HDFS. Using the regular File Input Format subclasses, 
Hadoop will automatically draw its input data sources from 
file paths within HDFS, and will distribute the work over the 
cluster in an intelligent fashion to exploit block locality 
where possible. 
 
HDFS provides a decommissioning feature which ensures 
that this process is performed safely. To use it, follow the 
steps below: 
 
Step 1: Cluster configuration: If it is assumed that nodes 
may be retired in your cluster, then before it is started, an 
excludes file must be configured. Add a key named 
dfs.hosts.exclude to your conf/hadoop-site.xml file. The 
value associated with this key provides the full path to a file 
on the Name Node's local file system which contains a list 
of machines which are not permitted to connect to HDFS. 
Step 2: Determine hosts to decommission: Each machine to 
be decommissioned should be added to the file identified by 
dfs. hosts. exclude, one per line. This will prevent them 
from connecting to the Name Node. 
Step 3: Force configuration reload: Run the command 
bin/hadoop dfsadmin -refreshNodes. This will force the 
Name Node to reread its configuration, including the newly-
updated excludes file. It will decommission the nodes over a 
period of time, allowing time for each node's blocks to be 
replicated onto machines which are scheduled to remain 
active.  
Step 4: Shutdown nodes: After the decommission process 
has completed, the decommissioned hardware can be safely 
shut down for maintenance, etc. The bin/hadoop dfsadmin -
report command will describe which nodes are connected to 
the cluster. 
Step 5: Edit excludes file again: Once the machines have 
been decommissioned, they can be removed from the 
excludes file. Running bin/hadoop dfsadmin –refresh Nodes 
again will read the excludes file back into the Name Node, 
allowing the Data Nodes to rejoin the cluster after 

maintenance has been completed, or additional capacity is 
needed in the cluster again, etc. 

Using the Map Reduce Plug in For Eclipse: 
An easier way to manipulate files in HDFS may be through 
the Eclipse plug in. In the DFS location viewer, right-click 
on any folder to see a list of actions available. You can 
create new subdirectories, upload individual files or whole 
subdirectories, or download files and directories to the local 
disk. 
 
If /user/hadoop-user does not exist, create that first. Right-
click on the top-level directory and select "Create New 
Directory". Type "user" and click OK. You will then need to 
refresh the current directory view by right-clicking and 
selecting "Refresh" from the pop-up menu. Repeat this 
process to create the "hadoop-user" directory under "user." 
Now, prepare some local files to upload. Somewhere on 
your hard drive, create a directory named "input" and find 
some text files to copy there. In the DFS explorer, right-
click the "hadoop-user" directory and click "Upload 
Directory to DFS." Select your new input folder and click 
OK. Eclipse will copy the files directly into HDFS, 
bypassing the local drive of the virtual machine. You may 
have to refresh the directory view to see your changes. You 
should now have a directory hierarchy containing the 
/user/hadoop-user/input directory, which has at least one 
text file in it. 

Partitioning Data: 
"Partitioning" is the process of determining which reducer 
instance will receive which intermediate keys and values. 
Each mapper must determine for all of its output (key, 
value) pairs which reducer will receive them. It is necessary 
that for any key, regardless of which mapper instance 
generated it, the destination partition is the same. If the key 
"cat" is generated in two separate (key, value) pairs, they 
must both be reduced together. It is also important for 
performance reasons that the mappers be able to partition 
data independently -- they should never need to exchange 
information with one another to determine the partition for a 
particular key.  
 
Hadoop uses an interface called Partitioner to determine 
which partition a (key, value) pair will go to. A single 
partition refers to all (key, value) pairs which will be sent to 
a single reduce task. Hadoop MapReduce determines when 
the job starts how many partitions it will divide the data 
into. If twenty reduce tasks are to be run (controlled by the 
JobConf.setNumReduceTasks()) method), then twenty 
partitions must be filled.  
The Partitioner defines one method which must be filled: 
public interface Partitioner<K, V> extends JobConfigurable 
{ 
  int getPartition(K key, V value, int numPartitions); 
} 
 
The getPartition() method receives a key and a value and the 
number of partitions to split the data across; a number in the 
range [0, numPartitions) must be returned by this method, 
indicating which partition to send the key and value to. For 
any two keys k1 and k2, k1.equals(k2) implies 
getPartition(k1, *, n) == getPartition(k2, *, n).  
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The default Partitioner implementation is called 
HashPartitioner. It uses the hashCode() method of the key 
objects modulo the number of partitions total to determine 
which partition to send a given (key, value) pair to. 

CONCLUSIONS 

In this paper, we argue that fundamental risks arise from 
sharing physical infrastructure between mutually distrustful 
users, even when their actions are isolated through machine 
virtualization as within a third-party cloud compute service. 
 
However, having demonstrated this risk the obvious next 
question is “what should be done?”. There are a number of 
approaches for mitigating this risk. 

 
First, cloud providers may obfuscate both the internal 
structure of their services and the placement policy to 
complicate an adversary’s attempts to place a VM on the 
same physical machine as its target. For example, providers 
might do well by inhibiting simple network-based co-
residence checks. However, such approaches might only 
slow down, and not entirely stop, a dedicated attacker. 
Second, one may focus on the side-channel vulnerabilities 
themselves and employ blinding techniques to minimize the 
information that can be leaked. This solution requires being 
confident that all possible side-channels have been 
anticipated and blinded. Ultimately, we believe that the best 
solution is simply to expose the risk and placement 
decisions directly to users. A user might insist on using 
physical machines populated only with their own VMs and, 
in exchange, bear the opportunity costs of leaving some of 
these machines under-utilized. For an optimal assignment 
policy, this additional overhead should never need to exceed 
the cost of a single physical machine, so large users—
consuming the cycles of many servers—would incur only 
minor penalties as a fraction of their total cost. Regardless, 
we believe such an option is the only foolproof solution to 
this problem and thus is likely to be demanded by customers 
with strong privacy requirements. 
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