
Volume 2, No. 5, May 2011

Journal of Global Research in Computer Science

RESEARCH PAPER

Available Online at www.jgrcs.info

© JGRCS 2011, All Rights Reserved 1

Weighted Mean Priority Based Scheduling for Interactive Systems
 H.S.Behera

*1
, Sabyasachi Sahu

2
 and Sourav Kumar Bhoi

3

Department of Computer Science and Engineering

Veer Surendra Sai University of Technology (VSSUT), Burla, Sambalpur, Odisha, India

hsbehera_india@yahoo.com1

sabyasaschi.sahu1102@gmail.com
2
, souravbhoi@gmail.com

3

Abstract--- Scheduling in Operating System means determining which tasks are supposed to run when there are multiple tasks to be run.

Consequently, the efficiency and performance of a system mainly depends on CPU scheduling algorithm where CPU is considered as one of the

primary computer resource. Traditionally, Priority Scheduling Algorithm is used for processes in which priority is the determining factor. This

paper proposes a newly improved process scheduling algorithm by using dynamic time quantum along with weighted mean. Experimental

analysis demonstrates that this proposed algorithm gives better response time making the algorithm useful for interactive systems.

Keywords--- CPU Scheduling, Priority, weighted mean, root mean square, Context Switch, Waiting time, Turn-around time, Response time.

INTRODUCTION

An Operating System is software consisting of programs

and data usually running on systems, controls the system’s

hardware resources and provides a common platform for

various application services. In multitasking and

multiprocessing environment the way the processes are

assigned to run on the available CPUs is called scheduling.

The fundamental problem in operating systems (OS) is

minimizing the wait for the user when he or she simply

wants the execution of a particular set of tasks.

Consequently, the resource utilization and the overall

performance of the system gets affected.

Hence, the Scheduler determines the assigning of processes

in the ready queue to the CPU for processing. The main goal

of the scheduling is to maximize the different performance

metrics viz. CPU utilization, throughput and to minimize

response time, waiting time and turnaround time and the

number of context switches [1]. Basing on the frequency of

scheduling, the scheduler in an OS are of three types viz.

Long-term Scheduler, Short-term Scheduler, and Middle-

term Scheduler. In the computer system, all processes

consist of a number of alternating two burst cycles (the CPU

burst cycle and the Input & Output (IO) burst cycle)[2]. The

2cycles viz. the CPU and the IO burst cycle execute

alternatively during a normal CPU cycle.

 The scheduler normally defines three states for a

process: RUNNING state (process is running for the CPU),

READY state(process is ready to run but isn’t actually

running on the CPU) and the WAITING state(the process is

waiting for some IO to happen). Also the scheduler and/or

dispatcher can be: Preemptive, implying that it is capable of

forcibly removing processes from a CPU when it decides to

give the CPU to another process, or Non-preemptive, in

which case the scheduler is unable to “force” processes off

the CPU[3]. A number of research works have been carried

out on scheduling algorithms hitherto for different

applications. Abielmona[4]on account of his analytical

scrutiny of an innumerable number of scheduling

algorithms gives a thorough insight into the factors affecting

a CPU scheduling algorithm’s performance. Also,

Matarneh[5], has used dynamic time quantum in order to

remove the limitations featuring in RR on using static time

quantum. Previous works by Joseph, Mathai [6], also give

insight into the value of response time to improve

interactivity of a scheduling algorithm, and Ramamrithan,

Krithi[7], enumerate the significance of dynamic priority and

its repercussions in a the algorithm.

SHCEDULIMG ALGORITHMS

In computer science, a scheduling algorithm is the method

by which tasks, processes, threads or data flow are given

access to system resources [2]. The need for scheduling

algorithms arises from the requirement for many Operating

Systems for multiprogramming. The criteria for

performance evaluation of a CPU scheduling algorithms viz.

the performance metrics are as follows:

1). Turnaround Time: This is the amount of time from

submission to completion of process. Usually, the goal is to

minimize the turnaround time.

2). Waiting Time: This is the amount of time spent ready to

run but not running. It is the difference in start time and

ready time. Usually, the goal is to minimize the waiting

time.

3). Response Time: It is the amount of time it takes from

when a request was submitted until the first response is

produced.

4). Number of Context Switches: For the better

performance of the algorithm, algorithm, the number of

context switches should be less.

mailto:hsbehera_india@yahoo.com
mailto:sabyasaschi.sahu1102@gmail.com
mailto:souravbhoi@gmail.com

H.S.Behera et al, Journal of Global Research in Computer Science, Volume 2 No 5 2011

© JGRCS 2011, All Rights Reserved 2

There are four well known algorithms predominantly used

in CPU scheduling briefly discussed below:

First-Come, First-Served (FCFS): This algorithm is

preemptive in nature and allocates the CPU to the process

that requests the CPU first. This algorithm is implemented

using FIFO queue. This scheduler runs each task until it

either terminates or leaves the task due to an IO interrupt.

The processes are allocated to the CPU on the basis of their

arrival at the queue. The FCFS is simple and fair but is

unsatisfactory for time sharing systems since it favors long

tasks.

Shortest-Job-First (SJF): The SJF algorithm is primarily

non-preemptive. It associates the length of the next CPU

burst with each process such that that the process with the

smallest next CPU burst is allocated to the CPU. The SJF

uses the FCFS to break tie i.e. when there are two processes

having the same CPU burst). The SJF algorithm can also be

implemented as a preemptive algorithm. When the

execution of a process that is currently running is interrupted

in order to give the CPU to a new process with a shorter

next CPU burst, it is called a preemptive SJF. On the other

hand, the non-preemptive SJF will allow the currently

running process to finish its CPU burst before a new process

is allocated to the CPU.

Priority Scheduling (PrS): The PrS algorithm associates

with each process a priority. The tasks are sorted according

to their priorities and CPU is allocated to the process based

on their priorities. Usually, lower numbers are used to

represent higher priorities. The process with the highest

priority is allocated first and those with the same priorities

are scheduled by FCFS policy. The methods of determining

priorities are done by some default mechanisms basing on

time limits, memory requirements and other resource

usages. The PrS algorithm runs high risks of starvation

because of it favoring jobs on the basis of their priorities

rather than their burst times.

Round Robin (RR): The RR algorithm is designed

especially for time-sharing systems. Here, a small unit of

time (called time quantum or time slice) is defined, its range

generally varying from 10-100 milliseconds. The RR

algorithm allows the first process in the queue to run until it

expires its quantum, then run the next process in the queue

for the duration of the same time quantum. The RR keeps

the ready processes in a FIFO queue. In a situation where

the process need more than a time quantum, the process runs

for the full length of the time quantum and then it is

preempted and added to the tail of the queue again but with

its CPU burst now a time quantum less than its previous

CPU burst. This continues until the execution of the process

is completed. The RR algorithm is naturally preemptive.

PROPOSED WMPrS ALGORITHM

In our work, the Priority Scheduling algorithm is improvised

by an judicious distribution of time quantum of processes,

and making the priority dynamic repeatedly over the whole

Round Robin cycle. Static time quantum being a limitation

of RR algorithm, we have used the concept of dynamic time

quantum. For efficient priority calculation and time quantum

distribution we use the concept of weighted mean i.e. to

calculate Taw we use priority as the weight and for

calculating Prwm we use time quantum as the weight.

Subsequently, we calculate TQrms and Prrms using the values

found above and also calculate Pravg and TQavg. In every

cycle, the algorithm groups burst times and priorities into

two basing on whether burst time of processes is > or <=

BTavg. If BTi<=BTavgthen the process Pi is allocated to the

CPU with time quantum = TQwm, otherwise Pi is allocated

to the CPU with time quantum= TQwm + TQrms. Similarly,

the priorities are also changed. The processes are then

updated with the remaining burst time and their new

priorities at the completion of each round robin cycle.

1. Sort the n processes according to their priority.

while (ready queue! =NULL)

2. Find the Weighted Mean (TQwm).

TQwm= Priority Weighted Mean Time Quantum of
all the processes.

3. Find the Weighted Mean (Prwm).

Prwm= Burst time Weighted Mean priority of all the
processes.

4. Calculate the TQrms.

TQrms= Root Mean Square Time Quantum

5. Calculate Prrms

Prrms = Root Mean Square Priority

6. Find BTavg and Pravg.

BTavg = Average of the burst time of the processes

Pravg = Average of the priorities of the processes

7. if(BTi ≤ BTavg)

Assign Pi ← TQwm

else

Assign Pi ← TQwm+ TQrms

8.while(a cycle of Round Robin is completed)

if (Pri ≤ Pravg)

Pri ← Prrms + Pri

else

Pri ← Pri - Prrms

end of while

9. Next , update the table for remaining processes by

new priority and remaining burst time and then goto
step 1.

10. End
Fig.1: Pseudocode of WMPrS Algorithm

H.S.Behera et al, Journal of Global Research in Computer Science, Volume 2 No 5 2011

© JGRCS 2011, All Rights Reserved 3

The following formulae are used in the pseudo-code of the

algorithm.

TQwm =

Prwm =

TQrms =

Prrms=

BTavg = ∑ (BT of all processes)/ number of processes.

Pravg = ∑ (priorities of all processes)/ no. of processes

Illustration
Given the burst time sequence: 91 , 67 ,32 ,28, 97 and the

priorities as 6 , 4 , 3 , 7 ,1 respectively for five processes.

Initially the processes are sorted in ascending order of their

priorities. Then we find the

TQwm and Prwm and it is found to be 57 and 4 (rounded off to

the nearest integer) respectively. Then we calculate TQrms

and Prrms and we get 13 and 1(rounded off to the nearest

integer) respectively. After that we calculate BTavg and Pravg

and we get 63 and 4(rounded off to the nearest integer)

respectively. Now the main scheduling begins by assigning

the time quantum dynamically to the processes. The process

with burst time 97 will be executed first because of its

higher priority, which is greater than BTavg so we assign 70

as the time quantum (addition of 57 and 13) . Then after

it we go to next process with burst time 32 which is lower

than the average so we assign 57 as the time quantum. Then

we continue like this up to the completion of first cycle . In

the next cycle we see that P5 and P1 left with 27 and 21 as

the remaining burst time with priorities 1 and 6 respectively.

Then we increase the priorities of these processes by

applying certain steps, so from this example we see that

priority of process P1 is less than Pravg, so new priority for

P1 is equal to 2 (addition of 1 and 1) and new priority for

process P2 is 5 (subtraction of 6 and 1).Hence after this we

apply the same steps(goto step 1) for scheduling of these

two processes.

PERFORMANCE EVALUATION

Assumptions

1. There is a pool of processes in the ready queue

contending for the allocation of CPU.

2. The processes are independent, running in a single

processor environment and compete for resources.

3.All basic attributes like burst time, priorities number of

processes of all the processes are known before submitting

the processes to the processor.

4. All processes are CPU bound and none I/O bound.

5. A large number of processes is assumed in the ready

queue for better efficiency.

6. The Context Switching Time is equal to zero i.e. there is

no Context Switch Overhead incurred in transferring from

one job to another

Data Set and Framework

To demonstrate the applicability of and performance of the

Weighted MeanPriority Scheduling (WMPrS) algorithm, it

is compared with Priority Scheduling(PrS) algorithm and

three case studies are taken, depending on the variance of

time quantum and priorities.

The input parameters consist of burst time, time

quantum and the number of processes. The output

parameters consist of average waiting time, average

turnaround time, number of context switches and response

time.

Case Study 1: We Assume five processes with priorities6, 4

, 3 , 7 , 1 respectively and with increasing burst time (P1=

91, P2 = 67, P3 = 32, P4 = 28, P5= 97) as shown in Table-

1(upper). The Table-1(lower) shows the output using PrS

and WMPrS algorithm.Table-2, Table-3 and Table 4 shows

the priority in each cycle for WMPrS and Table-5 shows the

comparison of response time among PrS and WMPrS .

Figure-2, Figure-3 , Figure-4 shows Gantt chart for WMPrS

and Figure-5 shows Gantt chart for PrS respectively.

Processes Priority Burst Time

P1 6 91

P2 4 67

P3 3 32

P4 7 28

P5 1 97

Algorithm Avg. TAT Avg.WT CS

PrS 224.8 141.8 4

WMPrS 233.2 170.2 7

Table 1: Comparison between PrS algorithm and WMPrS

Algorithm(case 1).

Processes Priority Burst Time

P5 1 97

P3 3 32

P2 4 67

P1 6 91

P4 7 28

Table 2: Priority table for WMPrS after sorting

priorities(case 1).

 70 57 70 70 57

P5 P3 P2 P1 P4

070 102 169 239 267

Fig. 2: Gantt chart for WMPrS in 1stcycle(case1).

Processes Priority Burst Time

H.S.Behera et al, Journal of Global Research in Computer Science, Volume 2 No 5 2011

© JGRCS 2011, All Rights Reserved 4

P5 2 27

P1 5 21

.

Table 3: Priority table for WMPrS in 2nd cycle

(case 1).

 25 23

P5 P1
267 292 313

Fig. 3: Gantt chart for WMPrS in 2ndcycle(case1).

Processes Priority Burst Time

P5 2 2

Table 4: Priority table for WMPrS in 3rdcycle (case 1).

 2

P5

313 315

Fig. 4: Gantt chart for WMPrS in 3rdcycle(case 1).

P5 P3 P2 P1 P4
0 97 129 196 287 315

Fig. 5: Gantt chart for PrS(case 1).

Processes Response time

through PrS

Response Time

through WMPrS

P1 196 169

P2 129 102

P3 97 70

P4 287 239

P5 0 0

Table 5: Comparison of Response times of each processes

by using Prs and WMPrs (case1).

Case Study 2:We Assume five processes with priorities 5 ,

4 , 8 , 7 , 1 respectively and with increasing burst time (P1=

52, P2 = 87, P3 = 72, P4 = 13, P5= 21) as shown in Table-

6(upper). The Table-6(lower) shows the output using PrS

and WMPrS algorithm.Table-7, Table-8 and Table 9 shows

the priority in each cycle for WMPrS and Table-10 shows

the comparison of response time among PrS and WMPrS .

Figure-6 , Figure-7 , Figure-8 shows Gantt chart for

WMPrS and Figure-9 shows Gantt chart for PrS

respectively.

Processes Priority Burst Time

P1 5 52

P2 4 87

P3 8 72

P4 7 13

P5 1 21

Algorithm Avg. TAT Avg.WT CS

PrS 141.4 92.4 4

WMPrS 159.2 110.2 7

Table 6: Comparison between PrS algorithm and WMPrS

Algorithm (case 2).

Processes Priority Burst Time

P5 1 21

P2 4 87

P1 5 52

P4 7 13

P3 8 72

Table 7: Priority table for WMPrS after sorting priorities

(case 2).

 52 65 65 52 65

P5 P2 P1 P4 P3

0 21 86 138 151 216

Fig. 6: Gantt chart for WMPrS in 1st cycle(case 2).

Processes Priority Burst Time

P2 5 22

P3 7 7

Table8: Priority table for WMPrS in 2nd cycle(case 2).

 18 13

P2 P3

216 234 241

Fig. 7: Gantt chart for WMPrS in 2nd cycle(case 2).

Processes Priority Burst Time

P2 5 4

Table 9: Priority table for WMPrS in 3rdcycle(case 2).

 4

P2

241 245

Fig. 8: Gantt chart for WMPrS in 3rd cycle(case 2).

P5 P2 P1 P4 P3

0 21 108 160 173 245

Fig. 9: Gantt chart for PrS(case 2).

Processes Response Time

 through PrS

Response Time

through WMPrS

P1 108 86

P2 21 21

P3 173 151

P4 160 138

P5 0 0

Table 10: Comparison of Response times of each processes

by using Prs and WMPrs (case2).

Case Study 3:We Assume five processes with priorities 4 ,

8 , 2 , 5 , 10 respectively and with increasing burst time

(P1= 49, P2 = 60, P3 = 38, P4 = 54, P5= 63) as shown in

H.S.Behera et al, Journal of Global Research in Computer Science, Volume 2 No 5 2011

© JGRCS 2011, All Rights Reserved 5

TABLE-11(upper). The Table-11(lower) shows the output

using PrS and WMPrS algorithm.Table-12 and Table-13

shows the priority in each cycle for WMPrS and Table-14

shows the comparison of response time among PrS and

WMPrS . Figure-10 and Figure-11 shows Gantt chart for

WMPrS and Figure-12 shows Gantt chart for PrS

respectively.

Processes Priority Burst Time

P1 4 49

P2 8 60

P3 2 38

P4 5 54

P5 10 63

Algorithm Avg. TAT Avg.WT CS

PrS 146.2 93.4 4

WMPrS 146.2 93.4 5

Table 11: Comparison between PrS algorithm and WMPrS

Algorithm(case 3).

Processes Priority Burst Time

P3 2 38

P1 4 49

P4 5 54

P2 8 60

P5 10 63

Table 12: Priority table for WMPrS after sorting

priorities(case 3).

 57 57 61 61 61

P3 P1 P4 P2 P5

0 38 87 141 201 262

Fig. 10: Gantt chart for WMPrS in 1st cycle(case 3).

Processes Priority Burst Time

P5 10 2

Table 13: Priority table for WMPrS in2nd cycle(case 3).

 2

P1

262 264

Fig. 11: Gantt chart for WMPrS in 2ndcycle(case 3).

P3 P1 P4 P2 P5
0 38 87 141 201 264

Fig. 12: Gantt chart for PrS(case 3).

Processes Response Time

 through PrS

Response Time

through WMPrS

P1 38 38

P2 141 141

P3 0 0

P4 87 87

P5 201 201

Table 14: Comparison of Response times of each processes

by using Prs and WMPrs (case3).

0

50

100

150

200

250

A
vg

.T
A

T

Different Burst Time

PrS

WMPrS

Fig 13: Comparison between PrS Algorithm and WMPrS

Algorithm by considering Average Turnaround Time for

case 1, case 2 and case 3 respectively.

0

50

100

150

200

A
vg

.T
A

T

Differrent Burst Time

PrS

WMPrS

Fig 14: Comparison between PrS Algorithm and WMPrS

Algorithm by considering Average Waiting Time for case 1,

case 2 and case 3 respectively.

Fig 15: Comparison between PrS Algorithm and WMPrS

Algorithm by considering context switches for case 1, case 2
and case 3 respectively.

H.S.Behera et al, Journal of Global Research in Computer Science, Volume 2 No 5 2011

© JGRCS 2011, All Rights Reserved 6

0

50

100

150

200

250

300

350

p1 p2 p3 p4 p5

R
e

sp
o

n
se

 T
im

e

Processes

PrS

WMPrS

Fig 16: Comparison of Response Time of PrS and WMPrS

in case 1.

0

50

100

150

200

P1 P2 P3 P4 P5

R
e

sp
o

n
se

Ti
m

e

Processes

PsR

WMPrS

Fig 17: Comparison of Response Time of PrS and WMPrS
in case 2.

Fig 18: Comparison of Response Time of PrS and WMPrS

in case 3.

CONCLUSION

Methodologies employed in a multitude of priority

scheduling algorithms are based on an efficient distribution

of priorities to reduce starvation of low priority processes

and increase the fairness of the scheduling algorithms. This

method, eventually results in the algorithm becoming more

interactive. Likewise, this proposed algorithm proposes a

method in which we take the weighted mean of the priorities

and the burst times, so that we can get a closer relation

between the burst times and priorities.

The approaches’ significance is observed when two or more

processes have a massive difference between their burst

times but have modest difference in their priorities. In PrS,

this might lead to starvation, but WMPrS through a variant

aging method checks this starvation to certain extent.

Although the WMPrS has higher avg. waiting time and turn-

around time than the PrS, the response times for each

process is noticeably lesser. The proposed algorithm

performs efficiently, provided there are surplus processes in

the ready queue and the processes have considerably larger

difference in their burst times as compared to their

difference in their priorities.

REFERENCES

[1] TarekHelmy, AbdelkaderDekdouk, "Burst Round Robin:

As a Proportional-Share Scheduling Algorithm", IEEE

Proceedings of the fourth IEEE-GCC Conference on

towardsTechno-Industrial Innovations, pp. 424-428, 11- 14

November,2007

[2] Silberschatz, A., P.B. Galvin and G.Gagne, Operating

Systems Concepts.7th Edn., John Wiley and Sons,

USAISBN:13:978- 0471694663, pp: 944,
[3] Stallings,W.:Operating Systems Internals and Design

Principles; 5thedn. Prentice Hall, Englewood Cliffs(2004)

[4] Rami Abielmona, Scheduling Algorithmic Research,

Department of Electrical and Computer Engineering

Ottawa-Carleton Institute, 2000.

[5] 2004Rami J. Matarneh , Self-Adjustment Time Quantum

in Round Robin Algorithm Depending on Burst Time of the

now Running Processes, Department of Management

Information Systems, American Journal of Applied Sciences

6 (10):1831-1837, 2009, ISSN 1546-9239..

[6] Joseph, Mathai. Fixed Priority Scheduling – A Simple

Model: Real-time Systems Specification, verification and
Analysis, Prentice-Hall International, London, (2001).

[7]Ramamrithan, Krithi, Dynamic Priority Scheduling – A

Simple Mode: Real-time Systems Specification, verification

and Analysis, Prentice-Hall International. London, (2001).

H.S.Behera et al, Journal of Global Research in Computer Science, Volume 2 No 5 2011

© JGRCS 2011, All Rights Reserved 7

