ISSN ONLINE(2319-8753)PRINT(2347-6710)
S.Anusuya 1, M.Balaganesh 2
|
Related article at Pubmed, Scholar Google |
Visit for more related articles at International Journal of Innovative Research in Science, Engineering and Technology
Normally Top-k queries are widely used for retrieving a ranked set of ‘k’ most objects based on the individual user preferences. As an example in online market places customer typically search a ranked set of products that satisfy their needs. From the perspective of a manufacturer, it is imperative that her products appear in the highest ranked positions for many different user preferences. Otherwise the product is not visible to the potential customers. In this paper, we propose a query type namely reverse top-k which leads to a query type that instead returns the set of customers those find a product that belongs to the top-k result of their preferences. It is necessary for the manufacturer to know the market condition based on the competition. The two versions of the proposed query are monochromatic and bichromatic which are introduced in this paper. In monochromatic a geometric interpretation is provided to acquire an intuition of the solution space. In case of bichromatic two query processing techniques are introduced, namely an efficient threshold based algorithm and an algorithm based on materialized reverse top-k views.
Keywords |
top-k query, reverse top-k query, user preferences, linear query functions. |
INTRODUCTION |
In fact, ranked queries have been studied extensively in database literature due to their popularity in many applications, such as decision making, recommendation rising, and data mining tasks. Many proposals have been made in order to improve the efficiency in answering ranked queries. Now a day’s most applications return to the user only a limited set of data points that are interesting for the user, therefore it is very important for a manufacturer that her products are returned in the highest ranked positions for as many different user preferences as possible. However the existing work studies only top-k queries from the perspective of customers that seek products matching with their preferences. In this paper, we study reverse top-k queries for business analysis. From the perspective of manufacturers who are interested in the impact of their products to customers, compared to their competitors existing products. Given potential products which are the user preferences for which this product is in the top-k query result set? For this, we propose reverse top-k queries and study two versions of the query monochromatic and bichromatic techniques. In monochromatic there is no knowledge of user preferences and the manufacturer aims to estimate the impact a potential product would have on the market. In bichromatic, a dataset with user preferences are given. The reverse top-k query returns those preferences that rank a potential product highly. |
The concept of Efficient Computation of reverse skyline search [3] explains as follows. First, we consider for a multidimensional data set P the problem of dynamic skyline queries according to a query point q. This kind of dynamic skyline corresponds to the skyline of a transformed data space where point q becomes the origin and all points of P are represented by their distance vector to q. The reverse skyline query returns the objects whose dynamic skyline contains the query object q. In order to compute the reverse skyline of an arbitrary query point, we first propose a Branch and Bound algorithm (called BBRS), which is an improved customization of the original BBS algorithm. Furthermore, identify a super set of the reverse skyline that is used to bound the search space while computing the reverse skyline. To further reduce the computational cost of determining if a point belongs to the reverse skyline, propose an enhanced algorithm (called RSSA) that is based on accurate pre-computed approximations of the skylines. These approximations are used to identify whether a point belongs to the reverse skyline or not. Through extensive experiments with both real-world and synthetic datasets, show that our algorithms can efficiently support reverse skyline queries. The enhanced approach improves reversed skyline processing by up to an order of magnitude compared to the algorithm without the usage of pre-computed approximations. |
Monochromatic and Bichromatic Reverse skyline search [6] explains Reverse skyline queries over uncertain databases have many important applications such as sensor data monitoring and business planning. Due to the existence of uncertainty in many real-world data, answering reverse skyline queries accurately and efficiently over uncertain data has become increasingly important. In this, model the probabilistic reverse skyline query on uncertain data, in both monochromatic and bichromatic cases, and propose effective pruning methods to reduce the search space of query processing. Moreover, efficient query procedures have been presented seamlessly integrating the proposed pruning methods. Extensive experiments have demonstrated the efficiency and effectiveness of our proposed approach with various experimental settings. Evaluating top-k queries [14] explains that the threshold algorithm read all grades of an object once seen from a sorted access. Here no need to wait until the lists give ‘k’ common objects. The sorted access is repeated until the top-k answer is seen. The threshold algorithm performs more random access than Fagin algorithm. It performs (m-1) random access for each object. It requires only bounded buffer space. Top-k query processing [8] explains that a query in a multimedia database means combining graded attributes by using aggregation function. The aggregation function gives overall grade of object and return ‘k’ objects with highest overall grade. Top-k query processing means finding ‘k’ objects that have the highest overall grades. For that the algorithms like, Fagin algorithm and threshold algorithm are used. |
The work in this paper is divided in two Methods. 1) Monochromatic2) Bichromatic. In the proposed system user express their preferences through linear top-k queries. Preferences are defined by assigning weight to each of the scoring attributes, indicating the importance of each attribute to the user. From the perspective of manufacturer, it is important that a product is returned in the highest ranked position for as many user preferences as possible. Estimate the impact of a product compared to their competition products. Advertise the products to potential customer.. A novel query type namely reverse top – k query is defined. The two versions of reverse top-k query are used, namely monochromatic and bichromatic. In monochromatic there is no knowledge of user preferences is required and the aim is estimate the impact of a potential product in the market. Analyse the geometric properties for two-dimensional case of monochromatic reverse top-k query and provide the algorithmic solution. In case of bichromatic a data set with user preferences are given and a reverse top-k query returns those preferences that rank a potential product highly. Here an efficient and progressive threshold – based algorithm called Reverse top – k threshold algorithm is introduced. |
PROPOSED SYSTEM |
In the proposed system user express their preferences through linear top-k queries. Preferences are defined by assigning weight to each of the scoring attributes, indicating the importance of each attribute to the user. From the perspective of manufacturer, it is important that a product is returned in the highest ranked position for as many user preferences as possible. Estimate the impact of a product compared to their competition products. Advertise the products to potential customer.. A novel query type namely reverse top – k query is defined. The two versions of reverse top-k query are used, namely monochromatic and bichromatic. In monochromatic there is no knowledge of user preferences is required and the aim is estimate the impact of a potential product in the market. Analyse the geometric properties for twodimensional case of monochromatic reverse top-k query and provide the algorithmic solution. In case of bichromatic a data set with user preferences are given and a reverse top-k query returns those preferences that rank a potential product highly. Here an efficient and progressive threshold – based algorithm called Reverse top – k threshold algorithm is introduced. |
PROBLEM DEFINITION |
Recently, the support for rank-aware query processing has attracted much attention in the database research community. Top-k queries retrieve only a ranked set of k objects that best match the user preferences, thus avoiding overwhelming result sets. Since most applications return to the user only a limited set of ranked results based on the individual user’s preferences, it is imperative for a manufacturer that her products appear in the highest ranked positions for many different user preferences. Otherwise the product is not visible to the potential customers. In this paper, assumed that users express their preferences through linear top-k queries, which are defined by assigning a weight to each of the scoring attributes, indicating the importance of each attribute to the user. This model is in agreement with the notion of preference and is widely adopted in related work. A novel query type, namely the reverse top-k query, which can be expressed as follows: “Given a potential product, which are the user preferences for which this product is in the top-k query result set? The two versions of the query are: monochromatic and bichromatic reverse top-k queries. In the former, there is no knowledge of user preferences and the aim is to estimate the impact of a potential product in the market. In the latter, a data set with user preferences is given and a reverse top-k query returns those preferences that rank a potential product highly. |
REVERSE TOP QUERIES |
A reverse top-k query(RTOPK) is defined by a user specified product ‘p’ and returns the weighting vectors ‘w’ for which p is in the top-k result set. Reverse top-k queries are essential for manufacturers to assess the impact of their products in the market based on the competition. The versions of reverse top-k queries are Monochromatic and Bichromatic. The geometric interpretation of the monochromatic reverse top-k query is provided to acquire the intuition of the solution space. Here, there is no knowledge of user preferences and a manufacturer aims to estimate the impact of the product on the market. It returns partitions of the solution space, when no user preferences are given but the distribution of them is known. The bichromatic identifies user those who are interested in a particular product by giving a known set of preferences. For bichromatic the following techniques namely efficient threshold based algorithm and an algorithm based on materialized reverse top-k views are used. |
Above figure shows the data flow diagram of the proposed system, in which set of products are the products in the market and based on the user preferences the impact of the product is found. If the geometric interpretation is provided then the monochromatic provide the intuition of the solution space. |
MONOCHROMATIC QUERIES |
The monochromatic queries are defined that, given a point q, a positive number k and a dataset S, the result set of the monochromatic reverse top-k query is the locus for which there exists p in TOPk(wi) such that fwi(q) ≤ fwi(p). Given a dataset S, monochromatic reverse top-k query returns all weighting vectors w, for which query point q ∈ TOPk (w). Let us assume that W denotes the set of all valid assignments of w. It is not possible to enumerate all possible assignments of w ∈ W, since the number of possible vectors w is infinite. On the other hand, the solution space W can be split into a finite set of partitions Wi ( Wi = W, Wi = Ø), such that query point q has the same ranking position for all the weighting vectors w ∈ Wi. Then, the result set of the monochromatic reverse top-k is a set of partitions Wi of the solution space W. The solution space W can be split into a finite set of non-adjacent partitions such that query point q has the same rank for all the weighting vectors. The monochromatic version identifies partitions of the solution space that satisfy the query. And it is useful for business analysis to estimate the impact of a product when no user preferences are given but the distribution of them is known. |
BICHROMATIC QUERIES |
The bichromatic is defined as follows, given a point q and a positive number k, as well as two datasets S and W, where S represents data points and W is a data set containing different weighting vectors, a weighting vector wi ∈ W belongs to the bichromatic reverse top-k result set of q, if and only if ∃p ∈ TOPk(wi) such that fwi (q) ≤ fwi (p). For a bichromatic reverse top-k query, two datasets S and W are given, where S contains the data points and W the different weighting vectors that represent user preferences. Then, the aim is to find all weighting vectors wi ∈ W such that the query point q ∈ TOPk(wi). Here we use a threshold based algorithm for bichromatic reverse top-k query, which discards the weighting vectors that cannot contribute to the result set, without evaluating the corresponding top-k queries. Based on the user preferences the impact of the product in the market is found. |
THRESHOLD BASED METHOD |
For bichromatic a threshold based method is used. It reduces the number of top-k evaluations by discarding weighting vectors. RTA sorts the weighting vectors based on pair wise similarity. Top-k queries are defined by similar vectors, and have similar result sets. First evaluate the top-k query, and calculate a threshold. For each weighting vector there may be possibly a prune based on threshold and refine the threshold. In each repetition a threshold is set based on the previously computed top-k result sets; in order to discard the next weighting vectors without top-k query evaluation. RTA is used for processing reverse top-k queries for arbitrary data dimensionality.RTA discards candidate user preferences without processing the respective top-k query processing. In addition to that an indexing structure based on space partitioning which materializes reverse Top-k views in order to further improve reverse top-k query processing. This method consistently out performs a brute force algorithm by one to three orders of magnitude in terms of required number of top-k evaluations. Numerical non negative values are considered for weights. Smaller scoring values are preferable.RTA aims to reduce the number of top-k query evaluations, based on the observation that top-k queries defined by similar weighting vectors return similar results. Hence RTA exploits already computed top-k result sets to avoid evaluating weighting vectors that cannot be in the reverse top-k result set. Therefore, in each repetition a threshold is set based on the previously computed top-k result set P. Given a set of points P, the maximum value corresponds to the worst scoring value for any point in the set based on wi and is used as a threshold during the reverse top-k evaluation. Initially RTA computes the top-k result for the first weighting vector that belongs to the result set and kept in main memory buffer. The score of the query point q based on the vector wi is computed and compared against buffer value and if it is not greater than wi buffer, then wi is added to the result set. Before, we take the next weighting vector (wifl) and we set the threshold equal to the wifl. |
EXPERIMENTAL EVALUATIONS |
In this section, we present an extensive experimental evaluation of reverse top-k queries. All methods are implemented in c# .net and run on a 3 GHz Dual Core AMD processor equipped with 2GB RAM. The block size is 8KB. As far as the data set S is concerned both real and synthetic data collections are used. For the uniform data set, all attribute values are generated independently using a uniform distribution. We evaluate the performance of RTA; the RTA performs more random access than Fagin algorithm. The TA performs (m-1) random access than Fagin algorithm. The TA is equal to instance optimal for every monotone aggregation function, over every database (excluding wild guesses) also, it is optimal in much stronger sense than Fagin’s Algorithm If it is a strict monotone aggregation function then, the Optimality ratio = m + m (m-1)cR/cs and it is a best possible (m = # attributes) one. If random access not possible (cr = 0) then, the optimality ratio = m. If sorted access not possible (cs = 0) then, the optimality ratio is equal to infinite. The TA is instance optimal (always optimal) for every strictly monotone aggregation function, over every database (including wild guesses) that satisfies the distinctness property. The experimental evaluation explains the efficiency of our techniques proposed. |
CONCLUSIONS |
By using the Reverse top – k queries the potential impact of a product is found. In this proposed system reverse top-k query is introduced which retrieves all weighting vectors for which the query point belongs to the top-k result set. The proposed query type is important for market analysis and for estimating the impact of a product based on the user preferences and the competitors products. The two versions of Reverse top-k query Monochromatic and Bichromatic are studied. For monochromatic reverse top-k query only a data set of products is given. For bichromatic reverse top-k query a set of weighting vectors is also available. Thereafter, we present an efficient threshold based algorithm for computing bichromatic reverse top-k queries, which discards candidate user preferences, without the need to evaluate the associated top-k query. The experimental evaluation demonstrates the efficiency of the proposed algorithms. |
References |
|