All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.

Accounting Plant Growth Promoting Rhizobacteria (PGPR) for Ecological Health

Preeti Jain1*, Amita Gupta1, Preeti Chandukar2

1Department of Biotechnology, Mansarovar Global Uniersity, Sehore, Bhopal, India

2Department of Biotechnology, Career College, Bhopal, India

*Corresponding Author:
Preeti Jain
Department of Biotechnology,
Mansarovar Global Uniersity, Sehore, Bhopal,

Received: 27-Apr-2022, Manuscript No. JMB-22-62044; Editor assigned: 02-May-2022, Pre QC No. JMB-22-62044 (PQ); Reviewed: 17-May-2022, QC No. JMB-22-62044; Revised: 30-Jun-2022, Manuscript No. JMB-22-62044 (R); Published: 08-Jul-2022, DOI: 10.4172/2320-3528.11.6.006

Visit for more related articles at Research & Reviews: Journal of Microbiology and Biotechnology


In the present scenario, the demand for food and nutrient has increased due to population growth. Ascribable to industrialization and urbanization, a very small area of productivity land is available for maintenance of life process. Agricultural growth depends upon the microbial population present in the soil over the last few years. Plant growth promoting rhizobacteria has turned out to be the most efficient tool for sustainable agriculture. PGPR, exert its effect by creating an intracellular and extracellular rhizo environment in search of a carbon source. These are the microbes that are found near or around the roots of the plant. So, the mode of action of PGPR is a new ray of hope for the farmers and the government to maintain the continuous supply of food for the increasing population. PGPR, as a growth booster increases phosphate solubilization, siderophore production, biological nitrogen fixation, and secretion of phytohormones (like indole acetic acid, cytokinin and gibberellin). PGPR is important artillery to control plant pathogens. It is ecofriendly and helps to maintain ecological and economical balance. In the perspective of this, the review widens the scope of the use of PGPR as a green microbial consortium for greater agrobiology and sustenance especially in the areas, wherein paucity of facts on its use, implementation, and alertness of genetically modified organisms has long prevailed.


Ascribable; Agrobiology PGPR; Phytohormones; Sideophore


The world population is increasing rapidly and it may be expected to be around 10 billion within the year 2060 as in line with the survey. However, the demand for food grain will increase over the years due to overpopulation. Unfortunately, the food grain is indirectly proportional to the boom in population. Due to industrialization and urbanization, the agricultural land available is limited. Food production must be progressed for that reason in coming years globally [1]. The surfacing of the green revolution in the 20th century brought an economic boom worldwide. The production of grains increased multiple times due to the usage of hybrid seeds and high-yielding varieties [2]. Mechanized agricultural practices are the source of pollutants in the form of fossil fuel used to power plants, agrochemicals contaminated sewage sludge during irrigation and excessive consumption of fertilizers. These practices no not only leave an unbelievable effect on the soil environment but also change the microbial population which assists in plant growth [3]. To feed the growing population with limited agricultural space available by the engineering of using favorable micro-organism denizer in the soil that attributes with the potential of reducing the correlated difficulties in agricultural practices [4]. The utilization of beneficial microorganisms as bio fertilizers appears as an eco-friendly biotechnological tool in the field of agronomics. Plant Growth-Promoting Rhizobacteria (PGPR) can be used as an effective tool to enhance crop production in all stressful conditions. Now to enhance food production while maintaining the quality of soil, we need to enhance the growth of microbes. Although we all know, microbes are a gift to our soil; they increase the fertility of the soil in their unique way. Thus the growth of rhizosphere microbial populations is accepted worldwide. It is a very useful biological agent. They play a very vital role in maintaining soil fertility, increasing plant yield, and suppressing phytopathogens for the improvement of eco-friendly sustainable agriculture.

This is a pleasant technique to improve crop production, magnify sustainable agriculture, and execute commercialization by using plant rhizobacteria with worldwide applicability. Roots of the plants emit some fluids which we call plant root exudates. This fluid influences the rhizosphere around the roots to prevent the growth of harmful microbes and promotes the growth of self and kin plants [5]. The root system of plants become complex due to a variety of species and micro-organism present in the common soil. Plants respond to the soil conditions and microbes through various mechanisms, one of which is the secretion of root exudates. This secretion allows plants to largely influence the rhizosphere, as well as the organisms exist within it. Secretion of organic compounds from the lateral roots of the plants helps a large number of micro-organisms to aggregate around the rhizosphere. Root exudates actively regulate symbiotic interactions with rhizobacteria inactive soil zone of the rhizosphere [6]. Rhizosphere-the rhizosphere is a thin area of soil immediately surrounding the root system. It is a densely populated area in which roots compete with invading root systems of neighbouring plant species for space, water and mineral nutrients as well as from positive and negative relationships with soil-borne organisms such as bacteria, fungi and insects. The rhizosphere is a very fruitful area since 5%-21% of all photo synthetically fixed carbon is transferred from plants to the rhizosphere via root exudates [7]. Rhizobacteria are root-associated bacteria that have a detrimental, neutral or beneficial effect on plant growth.  The name comes from the Greek word rhiza which means root. They form symbiotic relationships with many plants and inhibit the production of harmful microbes and they also have an ecological niche. They can develop (within the case of endophytic microorganisms) an area inside the plant cells in which they do not have to compete with any other microorganisms (Antoun and Kloepper) observed that some rhizosphere bacteria not only makes the plants stronger but safeguard them from pathogens. This group of bacteria is called Plant Growth Promoting Rhizobacteria (PGPR). Different generic bacteria are Azospirillium, Bacillus, Burkholderia, Klebsiella, Pseudomonas, etc. identified as PGPR. The plant growth-promoting bacteria are like a boom for the plants as they bring growth in plants both directly and indirectly. PGPR helps the plants in the production of phytohormones, providing biologically fixed nitrogen, and helps to uptake the phosphorous by the solubilization of inorganic phosphates. This is a direct procedure whereas the indirect method involves restraining the growth of different pathogens like bacteria, fungus, protozoa, etc [8]. Bacillus species of bacteria occur widely in the agricultural field, preventing pathogen infection in different ways. Some of them stimulate plant growth directly through improvement in soil nutrients and stimulation of defense mechanisms in plants infection. Thus it is a powerful alternative tool against synthetic chemicals. Pseudomonas and Bacillus can easily be grown in a simple medium at a low expense, in a simple organic compound without the requirement of organic growth factors. In recent years there has been much success in obtaining biological control of plant pathogens using bacterization techniques for wheat production. Bacteria Pseudomonas fluorescens are frequently isolated from soils and plant surfaces. Some of the bacteria produce metabolites, which form ligands with the environmental iron thus making it unavailable to pathogens. Till now a large number of diseases controlling antibiotics have been chemically identified such as phenazines, pyrrole type antibiotics, pyro-compounds 13 and indole derivatives.

Types of Pgpr

PGPR are very useful for plant growth in different ways: Plant growth-promoting rhizobacteria colonize more in the rhizospheric region than outside it reasons being the root exudates secret fluids such as amino acids and sugar which is a rich source of energy and nutrients to these bacteria. Some rhizobacteria live inside the plant in the tissues and are called endophytes [9]. Endophytes are ubiquitary, found in almost all plant species. Endophytes generally produce different types of plant hormones that enhance plant growth. Thus these rhizobacteria are endophytes that colonize the internal tissues of the plant. They could set up themselves on the root floor or within the roots. Hence plant growth-promoting bacteria can be categorized into Extracellular Plant Growth Selling Rhizobacteria (ePGPR) that can exist in the rhizosphere, on the rhizoplane or are present in the areas among the cells of the root cortex and intracellular (iPGPR) are found in the root cells generally in the nodular structure. Bacteria like Agrobacterium, Arthrobacter, Azotobacter, Azospirillum, Bacillus, Flavobacterium, Pseudomonas and Serratia belong to ePGPR whereas Allorhizobium, Azorhizobium, Bradyrhizobium, Meso rhizobium are examples of (iPGPR). They belong to the family Rhizobiaceae [10]. Plant Growth Promoting Rhizobacteria is a large community of microbes. They secrete certain substances which through direct and indirect mechanisms enables plants to grow [11]. These rhizosphere bacteria enhance the growth of plants and yield either directly or indirectly. The direct growth-promoting mechanisms are (i) nitrogen fixation; (ii) solubilization of phosphorus; (iii) production of phytohormones such as auxins (indole acetic acid (IAA)), Cytokinins, and gibberellins (iv) sequestering of iron by the production of siderophores; (v) lowering of ethylene concentration Micro-organisms promote and enhance the availability of plant nutrients and reduce the need for chemical fertilizers [12]. Nitrogen-fixing and P-solubilizing bacteria will be of great importance for plant nutrition by increasing N, K and P uptake in the plants. Improvement of plant growth may be achieved with direct application of plant growth-promoting rhizobacteria to seeds or plants [13]. The indirect mechanism of plant growth occurs when PGPR lessens or prevents the adverse effects on one or more plants pathogens. This can happen by producing adverse substances or by inducing resistance to pathogens [14].

Literature Review

Charactrristics of PGPR

Siderophores production: Siderophores are low molecular weight compounds generated under iron-restricted conditions, where ferric ion (Fe3+) performs a specific activity. It serves as a channel for the movement of Fe (III) into a microbial cell. In the rhizosphere, the accessibility of iron for microbial absorption is extremely limiting. So for their survival organisms secrete iron-binding ligands called siderophores which can bind the ferric ion and make it available to the host organisms. (Fe3+) becomes (Fe2+) which is then unbound from the siderophores inside the cell. Siderophore production works as a bio control mechanism since, with this process, plant growth-promoting rhizobacteria deprives other microorganisms of iron. PGPR also uses siderophores to obtain other heavy metals from the soil and prevents the heavy metal to cause toxicity in plants.

Production of Indole Acetic Acids

Indole Acetic Acid (IAA) is a popular phytohormone secreted in plants called auxin. IAA is usually a product of tryptophan which is an amino acid secreted by root exudates and is the main variant for making indole acetic acid generated by several microorganisms including Plant Growth Promoting Rhizobacteria (PGPR) [15].These bacteria display various characteristics like the production of plant growth regulators(like auxin, gibberellin, and ethylene), siderophores, HCN, and antibiotics. These rhizobacteria agitate host physiological processes for their benefit. They secrete secondary metabolites like Indole Acetic Acids due to a rich supply of substrates. Indole Acetic Acid plays a vital role in the growth and development of both roots and shoot in plants. For example, it helps in the elongation of roots, the development of more and more root hairs which facilitates the transportation of water and minerals from the soil through the xylem. IAA induces cell division, cell elongation, tissue differentiation, inhibition of axillary buds by changing a few conditions like increasing the osmotic concentration and water permeability of the cell, specific RNA and protein synthesis, increasing more and more cell wall synthesis.

Phosphate solubilization

Phosphorus (P) is another very important nutrient necessary for growth in plants after nitrogen (N). It is only 0.2% (w/w) of plant dry weight. It plays an important irreplaceable role in our ecosystem. It helps in the process of photosynthesis, respiraton, biosynthesis of macromolecules, energy transfer; etc Phosphorus (P) is present in huge amounts in soil mainly in two forms being inorganic P (Pi) and organic P (Po). Yet 95-99% of Phosphorus plants cannot use it as it is in an insoluble, immobilized and in form of precipitate the average P content in soil is nearly 0.05% (w/w). Nevertheless, only 0.1% of P can be utilized by plants. Chemical fertilizer is rich in phosphate ions available to plants are extremely reactive and they react with Ca2+, Fe3+, and Al3+ ions in the soil to form insoluble phosphate salt complexes. The efficiency of the plant to absorb P from chemical fertilizers is only 5–25%, leading to the loss of soil fertility. Plant growth-promoting bacteria recruit different action plans to use an unavailable form of phosphorus and satisfy the requirements of Phosphorus P by plants through dissolution and absorption. The usage of PGPR helps to maintain the pH of the soil and forms a micro area of Phosphorus P around the plant rhizosphere. This improves soil quality and strengthens the activity of other beneficial microorganisms, such as Rhizobium and Trichoderma. Thus the management of the PGPR promotes the absorption of nutritive element ions.


Production of secondary metabolites having antimicrobial activities

Secondary metabolites are being the subject of many research studies because these compounds exhibit many biological activities. These include antimicrobial, antifungal, anticancer, and anti-inflammatory activities. The different types of secondary metabolites secreted are Alkaloids, flavonoids, Methanol, Tannins, etc.

Application of PGPR

As it is been cited that using PGPR for improving crop manufacturing, thus reducing the want for chemical fertilizers, is very useful for sustaining crops. Inoculation of the seed with ACC-Deaminase helps to reduce ethylene level in plants. It promotes growth in plants in stressful biotic and abiotic conditions. Rhizobacteria can be commonly used as bio control agents protecting plants from different variety of microbial pesticides. They are like ray of hope in weed control of economically important crops. Hydrogen Cyanide (HCN) is an antibiotic produced by gram negative bio control bacteria. These unwanted plants which grow along with the main crops are thus suppressed by these volatile compounds. Thus PGPR have not only increased harvest index, protein content but has decreased fertilizer doses but has also shown differential complementary abilities too.


The modern agricultural practice has increased crop production but it resulted in many other related problems such as depletion of soil fertility, increase in soil salinization, soil and water pollution nutrient imbalance, the emergence of new pests and diseases and above all environmental degradation. So for the sustenance of life on Earth natural fertilizers proved to be an integral part of agriculture. This Plant Growth Promoting Rhizobacteria (PGPR) can be efficiently used as a bio control in the present scenario to improve crop yield. Awareness has to be created among farmers by guiding how to make these bio fertilizers an intrinsic part of their farming. The small efforts can bring change in their agricultural practices and can reduce environmental pollution like to reduce the emission of greenhouse gases like Nitrous Oxide (N2O) which warms our planet 300 times more than CO2.Plant growth-promoting rhizobacteria help in nitrogen fixation and phosphorus solubilization but very soon research must be done on potassium solubilization, which is the third major essential macro-nutrient for plant growth. Thus these bio agents are economical and will also create confidence among the farmers for their use.