ISSN ONLINE(2319-8753)PRINT(2347-6710)

All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.

Research Article Open Access

Experimental investigation of Spectral, Thermal and Non linear optical properties of new Thiosemicarbazone of Benzophenone crystals

Abstract

Thiosemicarbazone of Benzophenone(TSCBP) is a semi-organic crystal which is grown by solution growth technique by adopting slow evaporation method from the solvent methanol. The crystal dimension up to 14X6.5X4mm3 obtained. The harvested crystal were purified by repeated recrystallization .The induction period was measured at various super saturations and hence the interfacial energies were evaluated. Using the interfacial tension value, the nucleation parameters such as radius of the critical nuclei(r*), the Gibbs free energy for the formation of a critical nucleus (ΔG*) and the number of molecules in the critical nucleus(i*) were also calculated for various concentration of solvent at two different temperatures. The effect of surface tension, viscosity and density of these solvents are correlated with interfacial tension. These crystals were characterized by FT-IR spectra to identify the functional group present in the compound. The optical transparency was examined by UV-Spectral analysis. The molecular structure was analyzed by chemical environment of magnetic nuclei such as 1H and13C. The TGA and DSC confirm the decomposition of the sample at 184.140c. It confirms the grown crystal Thiosemicarbazone of (TSCBP) is thermally stable up to 184.140c .The grown crystal was examined by X-ray diffraction to determine its crystalline nature. Second harmonic generation efficiency of the powdered Thiosemicarbazone of benzophenone (TSCBP) was tested using Nd:YAG laser and it is found to be ~0.8 times that of potassium dihydrogen phosphate

G.V.Pandian, P .Anbusrinivasan

To read the full article Download Full Article | Visit Full Article