e-ISSN: 2319-9849

All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.

Research Article Open Access

Hydrate Risk Evaluation during Transport and Processing of Natural Gas Mixtures containing Ethane and Methane


ransport of hydrocarbon on the seafloor of the North Sea involves conditions of methane hydrate formation for most of the transport conditions from delivery to the receiving end. Hydrate stability regions are further extended through additional content of ethane. The critical question is therefore whether water will drop out from the gas and how it will drop out. Water can obviously condense out as liquid water, as has been the usual basis for hydrate risk evaluation schemes. Pipelines are rusty even before they are placed out on the seafloor and the question is if the water will benefit from dropping out onto these rusty surfaces at lower concentrations than dew-point concentrations for the same system at local temperatures and pressures. In this work we have used state of the art theoretical models to estimate maximum water content before condensation, and similar for adsorption on Hematite (rust). It is found that the maximum content of water that would be permitted for dew-point is more than 18 times than what would be permitted if adsorption on rust was the criteria for water drop-out. These ratios do not change significantly by adding ethane but the absolute tolerance limit for water mole-fraction is reduced. It is therefore recommended that dehydration units should be dimensioned according to estimated maximum water content before adsorption on rusty surfaces. Hematite is a dominant form of rust but it is still recommended that similar analysis is conducted for Magnetite and Iron oxide.

Kvamme B and Sapate A

To read the full article Download Full Article | Visit Full Article

Replica watches