ISSN ONLINE(2319-8753)PRINT(2347-6710)

All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.

Special Issue Article Open Access

Influence of Reinforcement Volumetric Percentage on the Flexural Properties of Multi Material Additive Manufactured Component

Abstract

Additive Manufacturing (AM) refers to a process by which build up a component in layers by depositing material from 3D CAD data. In recent years, Polyjet 3D printing technology has become one of the most widely-used Additive Manufacturing methods for various applications. This method can be used for multi material component such as functionally gradient materials, heterogeneous material structures and porous material structures. But some of the traditional fabrication techniques have difficulties such as uniform & random distribution, size, shape control and maximum percentage of secondary material to the primary material. In this work, Polyjet 3D printing technology is used for the fabrication of Multi Material Additive Manufactured component(MMAM) with volumetric percentages (10%, 15% and 20%) of reinforcement as modeled using CATIA VB SCRIPT software. The fabricated specimens are then tested in three points bending to determine their improvement in flexural properties. The experimental data shows that when the volumetric percentage of reinforcement (10% and 15%) used, the flexural strength and flexural modulus were increased compared to pure primary material. Based on the experimental results, this fabrication technique can be used for the Multi Material(MM) component with better bending strength for functional part applications.

Saravanan K, Arumaikkannu G

To read the full article Download Full Article | Visit Full Article