ISSN ONLINE(2319-8753)PRINT(2347-6710)

All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.

Research Article Open Access

Towards Zero-Waste Campus: Compositional Analysis of Solid Waste at the Staff Quarters to frame Inclusive Sustainable Campus Waste Management System

Abstract

Handling, disposal and impacts of existing Solid Waste Management (SWM) system in Higher Education Institutions (HEIs) of Puducherry Region have not been well documented. The current article discusses the importance of waste stream analysis with special reference to the residential waste to design and develop sustainable solid waste management system in HEIs through a study conducted at Staff Quarters of Pondicherry Engineering College (PEC), an undergraduate institution of Puducherry. The Solid Waste (SW) was segregated into compostable (organic), dry and special wastes. Dry and special wastes were classified into 7 primary categories, which were further classified into a total of 30 recyclable sub-categories. Source-specific waste stream analysis was carried out among different incomeclasses and the quantity and type of each major category of waste was determined. The results show that the average household SW generation rate is 1.760 ± 0.712 kg/day. The high amount of waste generation rate was found in middle income group 1.982 ± 0.837 kg/household/day, compared to low and high income groups that represented 1.685 ± 0.713 kg/household/day and 1.612 ± 0.585 kg/household/day, respectively. The composition study found that kitchen waste constitute the major fraction with 53 % of overall solid waste stream followed by yard waste (12%), plastics (10%), paper (8%), miscellaneous (4%), silt, soil &mud (3%), glasses (2%), textile/leather (2%), metals (2%), wood (1%), household hazardous products (1%), e-wastes (1%) and sanitary waste (below 1%). Kitchen and yard wastes together accounted for 65% of total SW with C/N ratio of 29:1 and calorific value of 1342kcal/kg at 62% of moisture level, indicating that the fraction can be recovered as good quality compost. Further breakdown of the recyclable components shows that metal and glass wastes are 100% recyclable while paper and plastic have the recovery potential of 98% and 94% respectively. The study has shown that 95% of staff quarter SW could be recovered through source segregation, segregated collection, composting and recycling practices. Based on the findings the authors have suggested programs and policies for improving source segregation, storage of recyclables, collection, transportation and safe disposal methods to facilitate increased recovery rate towards framing an inclusive sustainable waste management system.

R. Rajamanikam , G. Poyyamoli

To read the full article Download Full Article | Visit Full Article