ISSN:2321-6212

All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.

An Experimental Study on Metal Matrix Composites

 

 

S.R. Hariprakash, Department of Mechanical Engineering, SKR Engineering College, Chennai, Tamilnadu, India

*Corresponding Author:
                     S.R. Hariprakash

Department of Mechanical Engineering,
SKR Engineering College, Chennai, Tamilnadu, India
E-mail: [email protected] 

 

 

 

Received Date: 10/09/2021; Accepted Date: 15/09/2021; Published Date: 20/09/2021

Visit for more related articles at Research & Reviews: Journal of Material Sciences

Abstract

Aluminium alloy LM6 were reinforced with 3%, 6% and 9% of boron carbide and 3%, 6% and 9% of fly ash is mixed together by liquid metallurgy technique called stir casting. In this reinforcement is preheated to the temperature of about 5000C by using muffle furnace. The wear experiment was carried out by using a pin on disc apparatus for the different load variation of 1.5kg, 3kg and 4.5kg and sliding speed of 1m/s and sliding distance of 1000m. Tribology data acquisition system is used to study the wear rate and coefficient of friction for hybrid metal matrix composites. So it is mostly preferred in manufacturing of automotive engine parts and it is also influence high hardness and strength. For example Al/SiC/Gr is one of the hybrid metal matrix composites. Recently modern industry rapidly introducing different composites due to their high unique properties.

 

 

 

Composite material is a material composed of two or more distinct phases (matrix phase and reinforcing phase) and having bulk properties significantly different from those of any of the constituents. Many of common materials (metals, alloys, doped ceramics and polymers mixed with additives) also have a small amount of dispersed phases in their structures, however they are not considered as composite materials since their properties are similar to those of their base constituents (physical property of steel are similar to those of pure iron) . Favourable properties of composites materials are high stiffness and high strength, low density, high temperature stability, high electrical and thermal conductivity, adjustable coefficient of thermal expansion, corrosion resistance, improved wear resistance etc. Metal matrix composites has been identified as attractive materials for the wide range of applications in the field of structural design, electronics system and electronic packaging .Aluminium alloys reinforced with various ceramics such as silicon carbide and aluminium oxide are a unique class of advanced composite material developed for use in aerospace and commercial applications [1-3]. Compared with unreinforced metals, MMC exhibits significant improvements in strength and elastic modulus, wear resistance, fatigue resistance and damping 

capacity, in addition to high temperature mechanical properties and low thermal expansion. Since the coefficient of thermal expansion of metal matrix composites can be tailored by varying the nature, volume fraction and morphology of the reinforcment in the composite, many applications of aluminium metal matrix composites require controlled thermal expansion characteristics in order to match those of other components [4,5] . A low CTE and high thermal conductivity are desirable for applications such as electronic heat sinks and space structures. Furthermore low density is desirable for aerospace applications, particularly electrical structural applications [6-8]. Conventional metals for electronic packaging application include copper, aluminium, Ni-Fe alloys. However these materials do not meet the requirements in advanced electronic packaging applications for low CTE, high thermal conductivity, low density and low cost. One of the most widely used composites is the aluminium based composites. Aluminium matrix composites refer to the class of light weight high performance aluminium centric materials. The reinforcement in AMCs could be in the form of continuous or discontinuous fibres, whiskers or particulates with volume fractions ranging from a few percent to 70%. Reinforcements commonly used in aluminium matrix composites have been extended to include organic wastes such as rice husk ash, coconut shell ash, palm oil fuel ash, and fly ash and sugar cane bagasse. Ceramic materials being used as reinforcement include carbides, borides, nitrides and alumina. These have been reported to produce desired physical and mechanical properties in aluminium based composites [9-13] . The use of aluminium matrix composites has attracted interest in aerospace, defence and automotive applications owing to high strength to weight ratio, improved stiffness and controlled thermal expansion coefficient. The liquid state processing technique especially stir casting is a promising method for production of aluminum metal matrix composites because of their simplicity and ease of manufacture. When three materials are present it is called as hybrid metal matrix composites. Hybrid metal matrix composites provides excessive strength and hardness when compared to the normal material. So it is mostly preferred in manufacturing of automotive engine parts and it is also influence high hardness and strength. For example Al/SiC/Gr is one of the hybrid metal matrix composites. Recently modern industry rapidly introducing different composites due to their high unique properties. LITERA