- Mohamed Abouelenien, Xiaohui Yuan, BalathasanGiritharan, Jianguo Liu, and Shoujiang Tang, ‘Cluster-based sampling and ensemblefor bleeding detection in capsule endoscopy videos’, AmericanJournal of Science and Engineering, Vol.2(1), 2013.
- N. Bourbakis, ‘Detecting abnormal patterns in WCE images’, In Bioinformatics and Bioengineering, BIBE 2005. Fifth IEEE Symposiumon, pp.232-238, 2005.
- N. Bourbakis, S. Makrogiannis, and D. Kavraki, ‘A neural network-based detection of bleedingin sequences of WCE images’, InBioinformatics and Bioengineering, BIBE 2005, Fifth IEEESymposium on, pp.324-327, 2005.
- John Canny, ‘A computational approach to edge detection. Pattern Analysis and Machine Intelligence’, IEEE Transactions on, PAMI,Vol.8(6) pp.679-698, 1986.
- Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer, ‘Smote: syntheticminority over-sampling technique’,Journal of Artificial Intelligence and Research, Vol.321357 pp.16, 2002.
- Heng-Da Cheng and Ying Sun, ‘A hierarchical approach to color image segmentation using homogeneity’,Image Processing, IEEETransactions on, Vol.9(12), pp.2071-2082, 2000.
- M.T. Coimbra and J.P.S., ‘Mpeg-7 visual descriptors - contributions for automated featureextraction in capsule endoscopy’, Circuits andSystems for Video Technology, IEEE Transactionson, Vol.16(5), pp.628-637, 2006.
- Yanan Fu, M.Mandal, and GenchengGuo, ‘Bleeding region detection in WCE images based on colorfeatures and neural network, InCircuits and Systems (MWSCAS), IEEE 54th InternationalMidwest Symposium on, pp.1-4, 2011.
- B. Giritharan, Xiaohui Yuan, Jianguo Liu, B. Buckles, JungHwan Oh, and Shou Jiang Tang, ‘Bleedingdetection from capsule endoscopyvideos’, In Engineering in Medicine and Biology Society, EMBS 2008. 30th Annual International Conference of the IEEE, pp.4780-4783,2008.
- Robert M Haralick, KarthikeyanShanmugam, and Its' HakDinstein, ‘Textural features for imageclassification’, Systems, Man andCybernetics, IEEE Transactions on, Vol.6, pp.610-621, 1973.
- That Mon Htwe, CheeKhunPoh, Liyuan Li, Jiang Liu, EngHuiOng, and Khek Yu Ho, ‘Vision-basedtechniques for efficient wirelesscapsule endoscopy examination’, In Defense Science ResearchConference and Expo (DSR),pp.1-4, 2011.
- Yun Sub Jung, Young Ho Kim, Dong Ha Lee, and Jong Hyo Kim, ‘Active blood detection in a highresolution capsule endoscopy usingcolor spectrum transformation’, In BioMedical Engineering andInformatics, BMEI 2008, International Conference on, Vol.1, pp.859-862,2008.
- A. Karargyris and N. Bourbakis, ‘A methodology for detecting blood-based abnormalities in wirelesscapsule endoscopy videos’, InBioInformatics and BioEngineering, BIBE 2008, 8th IEEEInternational Conference on, pp.1-6, 2008.
- PohCheeKhun, Zhang Zhuo, Liang Zi Yang, Li Liyuan, and Liu Jiang, ‘Feature selection andclassification for wireless capsuleendoscopic frames’, In Biomedical and Pharmaceutical Engineering,ICBPE '09, International Conference on, pp.1-6, 2009.
- S. Lazebnik, C. Schmid, and J. Ponce, ‘Beyond bags of features: Spatial pyramid matching forrecognizing natural scene categories’, InComputer Vision and Pattern Recognition, 2006 IEEEComputer Society Conference on, Vol.2, pp.2169-2178, 2006.
- Yong-Gyu Lee and Gilwon Yoon, ‘Bleeding detection algorithm for capsule endoscopy’, WorldAcademy of Science, Engineering andTechnology, Vol.81, 2011.
- Baopu Li and M.Q.-H. Meng, ‘Computer-aided detection of bleeding regions for capsule endoscopyimages’, Biomedical Engineering,IEEE Transactions on, Vol.56(4) pp.1032-1039, 2009.
- SuthatLiangpunsakul, Lori Mays, and Douglas K Rex, ‘Performance of given suspected bloodindicator’, The American journal ofgastroenterology, Vol.98(12) pp.2676-2678, 2003.
- Michael Liedlgruber and Andreas Uhl, ‘Computer-aided decision support systems for endoscopy inthe gastrointestinal tract: A review’.Biomedical Engineering, IEEE Reviews in, Vol.4 pp.73-88, 2011.
- GuolanLv, Guozheng Yan, and Zhiwu Wang, ‘Bleeding detection in wireless capsule endoscopyimages based on color invariants andspatial pyramids using support vector machines’, In Engineeringin Medicine and Biology Society,EMBC, 2011 Annual InternationalConference of the IEEE, pp.6643-6646, 2011.
- Michal W. Mackiewicz, Mark Fisher, and Crawford Jamieson, ‘Bleeding detection in wireless capsuleendoscopy using adaptive colourhistogram model and support vector classification’, Vol. 6914, 2008.
- AliMoghaddamzadeh and N Bourbakis, ‘A fuzzy region growing approach for segmentation of colorimages’, Pattern recognition,Vol.30(6), pp.867-881, 1997.
- D. Mumford and J. Shah, ‘Optimal approximations by piecewise smooth functions and associatedvariational problems’, Communicationson Pure and Applied Mathematics, Vol.42(5) pp.577-685, 1989.
- Yu-IchiOhta, Takeo Kanade, and Toshiyuki Sakai, ‘Color information for region segmentation’,Computer graphics and image processing,Vol.13(3) pp.222-241, 1980.
- TimoOjala, MattiPietikainen, Senior Member, and TopiMaenpaa, ‘Multiresolution grayscale androtation invariant texture classificationwith local binary patterns’, IEEE Transactions on PatternAnalysis and Machine Intelligence, 2002.
- TimoOjala, MattiPietikainen, and David Harwood, ‘A comparative study of texture measures withclassification based on featureddistributions’, Pattern recognition, Vol.29(1) pp.51-59, 1996.
- F. Ortiz and F. Torres, ‘Automatic detection and elimination of specular reflectance in color imagesby means of MS diagram and vectorconnected filters. Systems, Man, and Cybernetics, Part C:Applications and Reviews, IEEE Transactions on, 36(5):681-687, 2006.
- Guobing Pan, Fang Xu, and Jiaoliao Chen, ‘A novel algorithm for color similarity measurement andthe application for bleeding detectionin WCE’, International Journal of Image, Graphics and SignalProcessing, Vol.3(5), pp.1-7, 2011.
- Guobing Pan, Guozheng Yan, XianglingQiu, and Jiehao Cui, ‘Bleeding detection in wireless capsuleendoscopy based on probabilisticneural network’, Journal of Medical Systems, pp.1477-1484, 2011.
- T. V. Papathomas, R. S. Kashi, and A. Gorea, ‘A human vision based computational model forchromatic texture segregation’, Trans. Sys.Man Cyber. Part B, Vol.27(3) pp.428-440, 1997.
- Barbara Penna, TammamTillo, Marco Grangetto, EnricoMagli, and Gabriella Olmo, ‘A techniquefor blood detection in wireless capsuleendoscopy images’, In 17th European Signal ProcessingConference (EUSIPCO 2009), 2009.
- CheeKhunPoh, That Mon Htwe, Liyuan Li, WeijiaShen, Jiang Liu, JooHwee Lim, Kap-LukChan,and Ping Chun Tan, ‘Multi-level localfeature classification for bleeding detection in wireless capsuleendoscopy images’, In Cybernetics and Intelligent Systems (C IS), 2010IEEE Conference on, pp.76-81, 2010.
- Irving S. Reed and Xiaoli Yu, ‘Adaptive multiple-band CFAR detection of an optical pattern withunknown spectral distribution’,Acoustics, Speech and Signal Processing, IEEE Transactions on,Vol.38(10) pp.1760-1770, 1990.
- C Signorelli, F Villa, E Rondonotti, C Abbiati, G Beccari, and R de Franchis, ‘Sensitivity andspecificity of the suspected bloodidentification system in video capsule enteroscopy’, Endoscopy,Vol.37(12) pp.1170-1173, 2005.
- A Sousa, M Dinis-Ribeiro, M Areia, M Correia, and M Coimbra, ‘Towards more adequate colourhistograms for in-body images’, InEngineering in Medicine and Biology Society, EMBS 2008,30th Annual International Conference of the IEEE, pp.2193-2196, 2008.
- Sabine E Susstrunk, Jack M Holm, and Graham D Finlayson, ‘Chromatic adaptation performanceof different RGB sensors’, In PhotonicsWest 2001-Electronic Imaging, pp.172-183. InternationalSociety for Optics and Photonics, 2000.
- Joost Van De Weijer and CordeliaSchmid, ‘Coloring local feature extraction’, In Computer Vision, ECCV 2006, pages 334-348, Springer,2006.
- Baobao Wang and Danjun Yang, ‘Computer-assisted diagnosis of digestive endoscopic images basedonbayesian theory’, In InformationEngineering and Computer Science, ICIECS 2009, Inter-national Conference on, pp.1-4, 2009.
- A. Yamada, M. Pickering, S. Jeannin, L. Cieplinsky, J. R. Ohm, and M. Kim, ‘Mpeg-7 visual part ofexperimentation model version 8.0,iso/iec jtc1/sc29/wg11/n3673, http://www.cselt.it/mpeg/public, Technical report, 2001.
|