- S.Chen, S.Hwang and Y.Wang, An RNN based prosodic information synthesizer for Mandarin Text to Speech, Proc. Of ICASSP, Vol.6,Issue 3, PP:226-239, May 1998.
- Md. KhalilurRhaman, Recurrent Neural Network Classifier for Three Layer Conceptual Network and Performance Evaluation,Proceedings of 11th International Conference on Computer and Information Technology (ICCIT 2008) 25-27December, 2008, Khulna, Bangladesh, PP: 747- 752, 2008. Journal of Computers, Vol.5, No.1, PP:40-48, January2010.
- E. Tulving and F. I. M. Craik (Editors), “The oxford handbook of memory.”University press, New York, PP: 120-121, 1990.
- T. K. Landauer, “How much do people remember? Some estimates of the quantity of learned information in long term Memory.”Cognitive Science, Vol.10, Issue 4, PP.477–493, 1986.
- R.L. Buckner, “Beyond HERA: Contributions of specific prefrontal brain areas to long-term memory retrieval, Psychon Bulletin Review,Vol.3, PP.149–158, 1996.
- K.SreenivasaRao and B. Yegnanarayana, Modeling syllable duration in Indian languages using neural networks, Proc. of IEEE ICASSP,Quebec, Canada, 17-21 May 2004, Vol:5,PP: 313-316, 2004.
- Farrokhi, Ali / Ghaemmaghami, Shahrokh / Sheikhan, Mansur, Estimation of prosodic information for Persian text-to- speech systemusing a recurrent neural network, Speech Prosody , Nara, Japan, March 23-26, PP: 475-478, March 2004.
- M.Riedi, A neural network based model of segmental duration for speech synthesis, Proc. of Eurospeech,PP:599-602, 1995.
- UtkuSalihoglu, Toward a Brain-like Memory with Recurrent Neural Networks,Ph.D thesis, 2009 .
- SteliosTimotheou, The Random Neural Network: A Survey, The Computer Journal, Vol:53, Issue 3, PP: 251-267, 2010.
- B.Yegnanarayana, Artificial Neural Networks. New Delhi, India: Printice-Hall, 1999.
- W. N. Campbell, Analog I/O nets for syllable timing, Speech Communication, vol. 9, pp. 57–61, Feb. 1990.
- Andreea Lazar1, Gordon Pipa1,2 and JochenTriesch, SORN:a self-organizing recurrent neural network, Computational Neurascience,Edited by: HavaT.Siegelmann, University of Massachusetts Amherst, USA, Front.Comput. Neurosci.3:23, 2009. .
- N.UmaMaheswari, A.P.Kabilan , R.Venkatesh, Speech ecognition System Based On Phonemes Using Neural Networks, IJCSNSInternationalJournal of Computer Science and Network Security, Vol.9, No.7, July 2009.
- Amrouche a; A. Taleb-Ahmed b; J. M. Rouvaen c; M. C. E. Yagoub, Improvement of the speech recognition in noisy environments using anonparametric regression, International Journal of Parallel, Emergent and Distributed Systems, 24: 1, 49 - 67, 2009.
- Y.A. Alotaibi, Investigation of spoken Arabic digits in speech recognition setting, Informatics and Computer Science, 173 , PP. 105–139,2005.
- A. Waibel, T. Harazawa, G. Hinton, K. Shakano, and K.G. Lang, Phoneme recognition using time delay neural networks, IEEETrans.ASSP, Vol. 37, PP:328–339, (1989).
- N.UmaMaheswari, A.P.Kabilan, R.Venkatesh, Speaker Independent Phoneme Recognition Using Neural Networks,Journal of Theoretical and Applied Information Technology, Vol.6, No.2, PP:230- 235, 2009.
- Susmita Das, IEEE Member, A Novel Cascaded Nonlinear Equalizer Configuration on Recurrent Neural Network Frameworkfor Communication Channel, Proceedings of the World Congress on Engineering 2009, Vol. I WCE 2009, July 1 - 3, 2009, London, U.K.
- IlyaSutskever; Geoffrey Hinton, Neural networks : the official journal of the International Neural Network Society,Vol.:ISSN: 1879-2782 ISO Abbreviation: Neural Networks Publication, Nov. 2009.
- Chin-Teng Lin, Senior Member, IEEE, Rui-Cheng Wu, Jyh-Yeong Chang, and Sheng-Fu Liang, A Novel Prosodic InformationSynthesizer Based on Recurrent Fuzzy Neural Network for the Chinese TTS System, IEEE Trans. On Systems, Man, and Cybernetics,Part B: Cybernetics, Vol.34, No.1, February 2004.
- Jun Namikawa and Jun Tani, Building Recurrent Neural Networks to Implement Multiple Attractor Dynamics Using the Gradient DescentMethod, AdvancesinArtificialNeuralSystems, Vol. 2009, Article ID 846040,11 Pages.
- Ying, Zhiwei and Shi, Xiaohua, US Patent 7136802 - Method and apparatus for detecting prosodic Phrase break in a text to speech (TTS)system, US Patent Issued on November 14, 2006.
- K.SreenivasaRao and B.Yegnanarayana, Modeling durations of syllables using neural networks, Computer Speech and Language,Vol.21, Issue 2, Pages: 282-295, April 2007.
- Nicolas Obin, Xavier Rodet, Anne Lacheret-Dujour, A Multi-Level Context-Dependent Prosodic Model Applied to Durational Modeling,Interspeech 2009, Brighton, UK, pp.512-515, 2009.
- B. Gao, Y. Qian, Z. Wu, and F. Soong, “Duration refinement by jointly optimizing state and longer unit likelihood,” Proc. of Interspeech,Brisbane, Australia, 2008.
- S.H. Chen, W.-H. Lai, and Y.-R. Wang, “A new duration modeling approach for mandarin speech, IEEE Trans. On Speech and AudioProcessing, Vol. 11, no. 4, pp. 308–320, 2003.
- J. Latorre and M. Akamine, “Multilevel parametric-base f0 model for speech synthesis,” Interspeech, 9th Annual Conference of theInternational Speech Communication Association, Brisbane, Australia, September 22-26, 2008, Brisbane, Australia, 2008.
- MaciejPiasecki and Adam Radziszewski, Aspects of natural language processing, Lecture notes on Computer science, InformationSystems and Applications, incl. Internet/Web, and HCI , Vol. 5070, Marciniak, Malgorzata; Mykowiecka, Agnieszka (Eds.) , XII, 449 p.,2009, Springer Verlag.
- HaraldRomsdorfer, Polyglot Text-to-Speech Synthesis Text Analysis & Prosody Control, Spech Communication, vol:49, PP:697-724,2009
|