- M. Liedlgruber, A. Uhl, Computer-aided  decision support systems for endoscopy in the gastrointesti-nal tract: a  review., IEEE reviews in biomedical engineering, vol. 4, pp. 73–88, 2011.
 
                 
                - J. Cychnerski, A. Brzeski, A. Blokus,  T. Dziubich, and M. J?edrzejewski, Konstrukcja bazy danych dla systemu  wspomagania diagnostyki chorób przewodu pokarmowego. In: Studia Informatica,  2012, vol. 33, no. 1. [in polish]
 
                 
                - Riaz F., Silva F.B., Dinis Ribeiro M.,  Coimbra M.T., Invariant Gabor Texture Descriptors for Classification of  Gastroenterology Images, IEEE Transactions on Biomedical Engineering, vol. 59,  no. 10, Pa´zdziernik 2012
 
                 
                - Riaz F., Hassan A., Rehman S., Qamar  U., Texture Classification Using Rotation- and Scale-Invariant Gabor Texture  Features, IEEE Signal Processing Letters, vol. 20, no. 6, 2013. Manjunath B.S.,  Ma W.Y., Texture Features for Browsing and Retrieval of Image Data, IEEE  Transactions on Pattern Analysis and Machine Intelligence, vol. 18, no. 8, 1996
 
                 
                - P. Doro?zy´nski, T. Dziubich, Ocena  mo?zliwo´sci zautomatyzowanej analizy obrazów z bada´n endoskopowych do  wspomagania diagnostyki gastropatii wrotnej. Materia?y konferencyjne ICT Young  2012, p. 341-348 [in polish]
 
                 
                - Ojala T., Pietikainen M., Maenpaa T.,  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with  Local Binary Patterns, IEEE Transactions on Pattern Analysis and Machine  Intelligence, vol. 24, no. 7, 2002
 
                 
                - J. Cychnerski, P. Doro?zy´nski, T.  Dziubich. An algorithm for portal hypertensive gastropathy recognition on the  endoscopic recordings. Information Systems Architecture and Technology, No. 35,  2014.
 
                 
                - Li B., Meng M. Q.-H., Tumor  Recognition in Wireless Capsule Endoscopy Images Using Textural Features and  SVM, IEEE Transactions On Information Technology In Biomedicine, vol. 16, no.  3, 2012
 
                 
                - Poh Chee Khun, Zhang Zhuo, Liang Zi  Yang, Li Liyuan, Liu Jiang, Feature Selection and Classification for  WirelessCapsule Endoscopic Frames, Biomedical and Pharmaceutical Engineering,.  ICBPE ’09. International Conference, 2009
 
                 
                - Häfner M., Liedlgruber M., Wrba F.,  Uhl A., Vécsei A., Color treatment in endoscopic image classification using  multi-scale local color vector patterns, Medical Image Analysis, 16(1): 75–86,  January 2012
 
                 
                - Liao S., Zhu X., Lei Z., Zhang L., Li  S. , Learning multi-scale block local binary patterns for face recognition,  Advances in Biometrics;pp. 828–837, 2007
 
                 
                - Häfner M., Gangl A., Liedlgruber M.,  Uhl A., Vecsei A., Wrba F., Pit Pattern Classification using Extended  LocalBinary Patterns,In: Proceedings of the 9th International Conference on  Information Technology and Applications in Biomedicine (ITAB’09),  Larnaca,Cyprus., 2009.
 
                 
                - A. Brzeski, J. Cychnerski,  Rozpoznawanie chorób uk?adu pokarmowego z wykorzystaniem technik sztucznej  inteligencji, in: ZeszytyNaukowe Wydzia?u Elektroniki, Telekomunikacji i  Informatyki Politechniki Gda´nskiej., 2011, no. 9, pp. 395–400. [in polish]
 
                 
                - G.D. Magoulas, V.P. Plagianakos, oraz  M.N. Vrahatis. Neural networkbased colonoscopic diagnosis using on-line  learning and differential evolution. Applied Soft Computing, 2004
 
                 
                - G.D. Magoulas. Neuronal networks and  textural descriptors for automated tissue classification in endoscopy. Oncology  Reports, 15, 2006.
 
                 
                - V.S. Kodogiannis oraz M. Boulougoura.  An adaptive neurofuzzy approach for the diagnosis in wireless capsule endoscopy  imaging. International Journal of Information Technology, 13(1), 2007
 
                 
                - T. Ojala, M. Pietikäinen, and D.  Harwood (1994), "Performance evaluation of texture measures with classification  based on Kullback discrimination of distributions", Proceedings of the  12th IAPR International Conference on Pattern Recognition (ICPR 1994), vol. 1,  pp. 582 - 585.
 
                 
                - Liao S., Zhu X., Lei Z., Zhang L., Li  S. , Learning multi-scale block local binary patterns for face recognition,  Advances in Biometrics; pp. 828–837, 2007
 
                 
                - Canny, J., A Computational Approach To  Edge Detection, IEEE Trans. Pattern Analysis and Machine Intelligence,  8(6):679–698, 1986.
 
                 
                - R.M. Haralick, K. Shanmugam, oraz I.  Dinstein. Textural features for image classification. IEEE Transactions on  systems, man, and cybernetics, November 1973
 
                 
                - Wu P., Manjunath B.S., Newsam S., Shin  H.D., A texture descriptor for browsing and similarity retrieval, Elsevier,  Signal Processing: Image Community, vol. 16, no. 1, 2000
 
                 
                - Kamarainen  J.-K., Kyrki V., Kälviäinen H., Invariance Properties of Gabor Filter-Based  Features-Overview and Applications, IEEE Transactions on  Image Processing, vol. 15, no. 5, Maj 2006
 
                 
             
             |