- H. D. Cheng, Y. H. Chen, and X. H. Jiang, ―Thresholding using two  dimensional histogram and fuzzy entropy principle, IEEE Trans. Image  Processing, vol. 9, pp. 732-735, 2000.
 
       
      - M.S. Atkins and B.T. Mackiewich, 1 J.C. Bezdek. Fully Automatic  segmentation of the brain in MRI. IEEE T. Med.Imag.,17:98–109.
 
       
      - L.O. Hall and L.P. Clarke. ―Review of MR image segmentation  techniques using pattern recognition". Med. Phys., 20:1033–1048, 1993. 1998
 
       
      - T.N. Pappas. An adaptive clustering algorithm for image  segmentation. IEEE T. Signal Process., 40:901 914,1992.
 
       
      - Fan, J., Han, M. and Wang, J. Single point iterative weighted  fuzzy c-means clustering algorithm for remote sensing image segmentation. Pattern  Recognition, 42(11), pp. 2527—2540., 2009.
 
       
      - Chen, J., Pan, D. and Maz, Z.,. Image-object detectable in multi  scale analysis on high-resolution remotely sensed imagery. International Journal  of Remote sensing, 30(14), pp. 3585–3602, 2009.
 
       
      - Chen, Z., Zhao, Z., Gong, P. and Zeng, B ―A new process for the  segmentation of high resolution remote sensing imagery. International Journal  of Remote Sensing, 27(22), pp. 4991-5001., (2006).
 
       
      - Li, H.T., Gu, H.Y., Han, Y.S. and Yang, J.H .―An efficient  multi-scale segmentation for high-resolution remote sensing imagery based on statistical  region merging and minimum heterogeneity rule. International Workshop on Earth  Observation and Remote Sensing Applications, 1, pp. 1-6,2008.
 
       
      - Maxwell, T. and Zhang, Y. ―A fuzzy logic approach to optimization  of segmentation of object-oriented classification. In: Proceedings of SPIE 50th  Annual Meeting - Optics & Photonics, San Diego, California, USA, 5909, pp.  1-11,2005.
 
       
      - Petersen,  M. E., De Ridder, D. and Handels, H. Image processing with neural networks - A  review. Pattern Recognition Letters, 35(10), pp. 2279-2301.,2002.
 
       
      - Orlando  J. Tobias and Rui Seara,Image Segmentation by Histogram Thresholding Using  Fuzzy Sets, IEEE Transactions on Image Processing, Vol.11, No.12, pp.  1457-1465,2002.
 
       
      - M.  Abdulgha four,Image segmentation using Fuzzy logic and genetic algorithms,  Journal of WSCG, vol. 11, no.1, 2003.
 
       
      - Lei  Jiang and Wenhui Yang,.A Modified Fuzzy C-Means Algorithm for Segmentation of  Magnetic Resonance Images, Proc. VIIth Digital Image Computing: Techniques and  Applications, vol. 10-12,pp. 225-231, 2003.
 
       
      - Bouchet  A, Pastore J and Ballarin V, ―Segmentation of Medical Images using Fuzzy  Mathematical Morphology, JCS and T, Vol.7, No.3, pp.256-262, October 2007.
 
       
      - Xian  Bin Wen, Hua Zhang and Ze Tao Jiang,. Multiscale Unsupervised Segmentation of  SAR Imagery Using the Genetic Algorithm, Sensors, vol.8, pp.1704,1711, 2008.
 
       
      - N.  Senthilkumaran and R. Rajesh, ―A Study on Edge Detection Methods for Image  Segmentation,Proceedings Computer Science (ICMCS- 2009, Vol.I, pp.255-259),  2009.
 
       
      -  N. Senthilkumaran and R. Rajesh, ―A Study on  Split and Merge for Region based Image Segmentation, Proceedings of UGC Sponsored  National Conference Network Security NCNS-08, pp.57-61), 2008.
 
       
      - N.  Senthilkumaran and R. Rajesh, ―Edge Detection Techniques for Image  SegmentatioN- A Survey, Proceedings of the International Conference on  Managing Next Generation Software Applications (MNGSA-08), pp.749-760, 2008.
 
       
      - Antonie  L., Automated Segmentation and Classification of Brain Magnetic Resonance  Imaging, C615 Project, 2008,.
 
       
      - Yonghui  Chen, Alan P. Sprague, and Kevin Reilly. MABAC –―Matrix Based Clustering  Algorithm.
 
       
      - L.Jiang  and W. Yang. ―A Modified Fuzzy C-Means Algorithm for Segmentation of Magnetic  Resonance Images. Proc. VIIth Digital Image Computing: Techniques and  Applications. Sydney 10-12 Dec. 2003.
 
       
      - S.R.  Kannan. ―Segmentation of MRI Using New Unsupervised Fuzzy C Mean Algorithm. ICGST-GVIP  Journal. Vol. 5. No.2. Jan. 2005.
 
       
      - K.S.  Chuang. H.L. Tzeng. S. Chen. J. Wu. and T.J. Chen. ―Fuzzy C Means Clustering  with Spatial Information for Image Segmentation. Computerized Medical Imaging  and Graphics. Vol. 30. Elsevier. pp. 9–15, (2006).
 
       
      - M.  Ozkan, B.M. Dawant, R.J. Maciunas, ―Neural Network Based Segmentation of  Multi-Modal Medical Images: A comparative and Prospective Study, IEEE Trans.  On Medical Imaging, vol.12, no.3, pp.534-544, September 1993.
 
       
      - Alina  Doringa, Gabriel Mihai, Dan Burdescu,―comparison of two image segmentation  algorithms Second international conference on advances in multimedia, IEEE  computer society, pp. 185-190 (2010).
 
       
      - Steven  L Eddins, Richard E.woods, Rafael C, ―Digital image processing,2009.
 
       
      - Shiping  Zhu, Xi Xia, Qingrong Zhang, kamel Belloulata ―An image segmentation in image  processing based on threshold segmentation, Third international IEEE  conference on signal-Image Technologies and internet based system, SITIS 2007  ,pp. 673-678.
 
       
      - Raman  Maini, Dr.Himanshu Aggarwal ―Study and comparison of various edge detection  techniques, International journal of image processing, vol. 3: issue(1).
 
       
      - Jaskirat  Kaur, Sunil Agrawal and Renu Vig. ; Comparative Analysis of Thresholding and  Edge Detection Segmentation Techniques. International Journal of Computer  Applications 39(15):29-34, February 2012. Published by Foundation of Computer  Science, New York, USA (2012).
 
       
      - Yu  Jin Zhang, Dept. of Electron.Eng., Tsinghua Univ., Beijing; Signal Processing  and its Applications, Sixth International,Symposium on. 2001.
 
       
      - P.  Karch, I. Zolotova, ―An Experimental Comparison of Modern Methods of  Segmentation, IEEE 8th International Symposium on SAMI, \ pp. 247-252, 2010.
 
       
      - S.Thilagamani  and N. Shanthi;A Survey on Image Segmentation Through Clustering  International Journal Of Research and Reviews in Information Sciences Vol.  1,No. 1, March 2011.
 
       
      - Huang  Min,Sun bo,Xi JianqingAn Optimized image retrieval method based on  Hierarchical clustering and genetic algorithm International forum on  Information technology and applications,978-0-7695-3600-2/09-IEEE,2009.
 
       
      |