- B. Klare and A. K. Jain, “Heterogeneous face recognition using kernel prototype similarities,” IEEE Trans. Pattern Anal. Mach. Intel., vol. 35,no. 6, pp. 1410–1422, Jun. 2013.
- Z. Lei, S. Liao, A. K. Jain, and S. Z. Li, “Coupled discriminant analysis for heterogeneous face recognition,” IEEE Trans. Inf. Forensics Security,vol. 7, no. 6, pp. 1707–1716, Dec. 2012.
- S. Liao, D. Yi, Z. Lei, R. Qin, and S. Li, “Heterogeneous face recognition from local structures of normalized appearance,” in Proc. 3rd ICB, pp. 209–218, 2009
- Y. Fu, S. Yan, and T. S. Huang, “Correlation metric for generalized feature extraction,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 12, pp. 2229–2235, Dec. 2008.
- T. Ahonen, E. Rahtu, V. Ojansivu, and J. Heikkila¨ , “Recognition of Blurred Faces Using Local Phase Quantization,” Proc. Int’l Conf. Pattern Recognition, pp. 1-4, 2008.
- S. A. Billings, H. Wei, and M. A. Balikhin, “Generalized multiscale radial basis function networks,” Neural Netw., vol. 20, no. 10, pp. 1081–1094, Dec. 2007.
- T. Ahonen, A. Hadid, and M. Pietika¨inen, “Face Description with Local Binary Patterns: Application to Face Recognition,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 28, no. 12, pp. 2037-2041, Dec. 2006.
- J. Yang, A. F. Franji, J. Y. Yang, D. Zhang, and Z. Jin, “KPCA plus LDA:A complete kernel fisher discriminant framework for feature extraction and recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 2, pp. 230–244, Feb. 2005.
- R. Neruda and P. Kudová, “Learning methods for radial basis function networks,” Future Generat. Comput. Syst., vol. 21, no. 7, pp. 1131–1142, Jul. 2005.
- J. Park and I. W. Sandberg, “Approximation and radial-basis-function networks,” Neural Comput., vol. 5, no. 2, pp. 305–316, 1993.
- W. A. Light, “Some aspects of radial basis function approximation,” Approximation Theory, Spline Functions Appl., vol. 356, no. 2, pp. 163–190, 1992.
- M. Truk and A. Pentland, J. Cognit. Neurosci., “Eigenfaces for Recognition,” vol. 3, no. 1, pp. 71–86, 1991.
- M. D. Richard and R. P. Lippmann, “Neural network classifiers estimate Bayesian a posteriori probabilities,” Neural Comput., vol. 3, no. 4, pp. 461–483, 1991.
- J. Park and I. W. Sandberg, “Universal approximation using radial-basis function networks,” Neural Comput., vol. 3, no. 2, pp. 246–257, 1991.
- K. Hornik, M. Stinchcombe, and H. White, “Multilayer feed forward networks are universal approximators,” Neural Netw., vol. 2, no. 5, pp. 359–366, 1989.
|