All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.

Research Article Open Access

Preparation and Characterization of Silica Material from Rice Husk Ash – An Economically Viable Method


Rice husk is a form of agricultural biomass that provides an abundant silicon source. Rice husks are widely burnt in agricultural fields in India because it is difficult to find other uses for them. Farmer’s burn rice hulls usually under incomplete combustion conditions to avoid accidental fires. The objective of this study was to develop a new method of amorphous silica was prepared from rice husk ash by sol-gel method. Initially received from Rice husk ash was calcined at 400°C, 500°C, 600°C and 700°C for 5 hrs to remove the volatiles in the sample and determine the amorphous structure of SiO2. Next, the thermally treated RHA was mixed with alkali solution to produce sodium silicate solution and precipitated silica was produced by the neutralization of sodium silicate solution. Rice Husks soaked in nitric acid produced the maximum amount of the sodium silicate solution and precipitated silica. Sodium oxide (Na2O) content and silica (SiO2) content in the sodium silicate solution were also determined. Extracted precipitated silica particles were characterized by Fourier transform infrared (FTIR), X-Ray diffraction and Optical microscopy techniques. The chemical composition of silica was confirmed by FTIR and SEM with EDX. Highly pure amorphous silica was derived from rice husk ash was confirmed by XRD pattern. The morphology of the obtained materials was analyzed by SEM. At optimized conditions, nano sized highly pure silica was produced with a high reactivity and 99.9% amorphous in form. This economic technology as applied to waste material also provides many benefits to the local agro industry. Thus this paper may be providing a low cost and simple method to prepare functional materials.

Geetha D, Ananthiand A, Ramesh PS

To read the full article Download Full Article | Visit Full Article